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Aberrant Distortion of Variance Components in Multilevel Models Under
Conflation of Level-Specific Effects

Jason D. Rights
Department of Psychology, University of British Columbia

Abstract
Methodologists have often acknowledged that, in multilevel contexts, level-1 variables may have distinct
within-cluster and between-cluster effects. However, a prevailing notion in the literature is that separately
estimating these effects is primarily important when there is specific interest in doing so. Consequently, in
practice, researchers uninterested in disaggregating these effects (or unaware of their difference) routinely fit
models that conflate them. Furthermore, even researchers who properly disaggregate the fixed components
in a model (avoid fixed conflation) may still inadvertently and unknowingly conflate the random effects (fail
to avoid random conflation). The purpose of this article is to elucidate an unappreciated consequence of such
fixed or random conflation, namely, that it can cause systematic distortion in all variance components, yield-
ing uninterpretable variances that adversely affect the entire model. In this article, I provide novel mathemat-
ical derivations, simulations, and pedagogical illustrations of such variance distortion, showing how it leads
to several aberrant consequences: (1) error variances at level-1 and level-2 can systematically increase (in
the population) with the addition of predictors; (2) there can be a large apparent degree of between-cluster
random-effect variability in cases in which there is actually no between-cluster outcome variability; (3) R-
squared measures of explained variance can be severely biased, uninterpretable, and well below the logical
bound of 0; and (4) inference for all fixed components of the model—not just the conflated slopes them-
selves—can be compromised. I conclude with recommendations for practice, including cautionary notes on
interpreting results from prior research that had specified conflated slopes.

Translational Abstract
Many analyses in psychology and other fields involve multilevel structured data, such as students nested within
classrooms or repeated observations nestedwithin individuals. In these contexts, it has been established that ob-
servation-level predictor variables may have distinct effects at the within-cluster level (e.g., within classrooms)
versus the between-cluster level (e.g., between classrooms). However, in practice, researchers uninterested in
disaggregating these effects (or unaware of their difference) routinely fit models that conflate them, meaning
they obtain a single estimate for the slope of the observation-level variable that is, implicitly, an uninterpretable
weighted average of the level-specific effects. The purpose of this article is to elucidate an unappreciated conse-
quence of such conflation, namely, that it can cause systematic distortion in the variance components, yielding
variances that are largely uninterpretable and that adversely affect the entire model. In this article, I explain this
concept, and illustrate several of its key implications with pedagogical examples. For instance, I show how con-
flation leads to: (1) error variances at both level-1 and level-2 systematically increasing with the addition of pre-
dictors; (2) a large apparent degree of between-cluster variability in cases in which there is actually no
between-cluster variability; (3) severely biased and uninterpretable R-squared measures of explained variance,
which can also be well below the logical bound of 0; and (4) compromised inference for all of the slopes
included in the model. I conclude with recommendations for practice, including a cautionary note on interpret-
ing results from prior research that had specified conflated slopes.

Keywords: multilevel modeling, linear mixed effects modeling, centering, variance components, intra-
class correlation
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For the past several decades, multilevel modeling (MLM; also
known as hierarchical linear modeling or linear mixed effects
modeling) has been the most popular approach to accommodating

nested data structures in the psychological sciences, and has been
widely used in many other fields, such as education, biology, and
organizational research (Goldstein, 2010; Raudenbush & Bryk,
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2002; Snijders & Bosker, 2012). As a prototypical example, an
analysis might involve collecting data from students across multiple
classrooms. The dataset would then have a two-level structure, in
which individual students are at level-1 (i.e., the observation level)
and classrooms are at level-2 (i.e., the cluster level). MLM provides
an intuitive framework by which researchers can accommodate the
dependency of observations within the same cluster (e.g., students
within the same class) and simultaneously examine potential effects
of level-1 variables (e.g., individual student characteristics) and
level-2 variables (e.g., classroom-level characteristics).
Intrinsic to such hierarchical data structures is the possibility that

level-1 independent variables can exert distinct level-specific effects,
that is, distinct within-cluster and between-cluster effects. For exam-
ple, in the United States, data often suggest there to be a positive
between-state association of income and political conservatism, but a
negative within-state association—that is, states with higher average
income tend to be less politically conservative, whereas people with
higher income relative to their state’s average tend to be more politi-
cally conservative (e.g., Gelman et al., 2007). As another example,
suppose a study involves repeated measures collected from individu-
als, and hence persons are the clustering unit. If looking at the rela-
tionship between a person’s time spent on a cognitive task and their
accuracy, one might expect a positive between-person association
(because people who are better at the task overall are likely both
faster and more accurate than those who are worse at the task) but a
negative within-person association (because people tend to do worse
when they rush, i.e., spend less time on the task than their average
time spent; e.g., Murayama et al., 2017). In a third, classic example,
consider a dataset of students nested within classrooms with math
achievement as the predictor and math self-efficacy the outcome. In
such cases, it is often found that the within-class relationship is more
positive than the between-class relationship. Specifically, a student’s
achievement relative to their classroom is highly positively predictive
of self-concept, but when looking across classrooms, holding con-
stant a student’s absolute level of achievement, being in a high-
achieving classroom (and thus having high-achieving peers to which
to compare oneself) is negatively associated with self-concept (this
phenomenon is often termed the “big-fish-little-pond effect;” e.g.,
Marsh et al., 2008).1

Failing to appropriately disaggregate such level-specific effects
can yield a slope estimate that is an “uninterpretable blend” of the
two (Cronbach, 1976; Raudenbush & Bryk, 2002). For example, if
one estimated a single slope to describe one of the aforementioned
relationships (income and political conservatism, reaction time
and accuracy, or math achievement and math self-concept), this
estimate would be of questionable utility and interpretability, and
would implicitly reflect some weighted average of the two distinct
and highly disparate effects. Such a slope is often said to be con-
flated (Preacher et al., 2010; Rights et al., 2020).
Nonetheless, current methodological recommendations are not

absolute. On the one hand, numerous sources do recommend dis-
aggregating level-specific effects to ensure appropriate level-
specific inferences (e.g., Asparouhov & Muthén, 2019; Brauer &
Curtin, 2018; Curran & Bauer, 2011; Enders & Tofighi, 2007;
Hamaker & Muthén, 2020; Hoffman, 2019; Raudenbush & Bryk,
2002; Wang & Maxwell, 2015), and this advice is commonly fol-
lowed in practice. On the other hand, however, even among meth-
odologists who recognize the merit of such disaggregation and
largely recommend doing so, it is also commonly suggested that

its importance depends on the research context. For instance, it is
suggested that disaggregation may not be necessary if one has no
theoretical reason to believe within-cluster and between-cluster
effects differ, has no substantive interest in looking at these effects
separately, or considers the level-1 predictors to be control varia-
bles (see, for example, Dalal & Zickar, 2012; Enders, 2013;
Enders & Tofighi, 2007; Hamaker & Grasman, 2014; Hofmann &
Gavin, 1998; Hox et al., 2018; McCoach, 2010; Paccagnella,
2006; Peugh, 2010; Raudenbush & Bryk, 2002; Snijders &
Bosker, 2012). At a more extreme level, a recent methodological
article has even stated that disaggregating level-specific effects (in
particular, via cluster-mean centering) is a “dangerous practice”
that “should be abandoned” (Kelley et al., 2017; this argument,
however, was later rebutted by Bell et al., 2018; ). Consequently,
conflated slopes are routinely specified in published multilevel
applications, and have been noted to be the most common way
level-1 predictors are incorporated into models in various research
contexts (see, e.g., Asparouhov & Muthén, 2019, p. 129; Hoffman,
2015, p. 344; Hox et al., 2018, p. 48; Preacher & Sterba, 2019, p.
253). Adding further concern is the fact that, though nearly all
sources discussing conflation focus exclusively on the fixed por-
tion of the model (i.e., across-cluster average slopes), there is
also the possibility to conflate the random portion of the model
(i.e., the random effects representing cluster-specific deviations
from the across-cluster average slopes), and commonly, even
when the fixed portion is disaggregated, the random portion will
be conflated (Rights & Sterba, 2020).

The purpose of this article is to elucidate and demonstrate an
unappreciated consequence of conflating level-specific effects,
namely, that this practice can cause systematic distortion in var-
iance components. Importantly, this distortion can compromise
model inferences and interpretation, even when one has no sub-
stantive interest in separately considering within-cluster versus
between-cluster effects. In this article, I provide descriptions and
pedagogical illustrations of how conflation leads to distortion of
variances, and provide novel mathematical derivations and formu-
las that show the degree of distortion to be a direct function of the
discrepancy in the level-specific effects. I further explain and illus-
trate how such distortion can lead to several aberrant and unintui-
tive issues:

1. Error variances at both level-1 and level-2 can systemati-
cally increase (in the population) with the addition of
predictors;

2. There can be a large apparent degree of between-cluster
random-effect variability in cases in which there is
actually no between-cluster outcome variability;

1 This slope of math self-concept on class-mean math achievement,
conditioning on absolute (not class-mean-centered) math achievement, is
an example of a contextual effect (Raudenbush & Bryk, 2002; Snijders &
Bosker, 2012). A contextual effect is mathematically equal to the between-
cluster effect minus the within-cluster effect of the level-1 variable.
Within-cluster effects and contextual effects are directly estimated in so-
called contextual effect models, whereas within-cluster effects and
between-cluster effects are directly estimated in cluster-mean-centered
models (both types of models will be discussed in detail in the current
article).
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3. R-squared measures of explained variance, which are of-
ten used to quantify effect size, can be severely biased,
uninterpretable, and well below the logical lower bound
of 0;

4. Testing and inference for all fixed components of the
model—not just the conflated slopes themselves—can be
compromised, particularly in terms of increased estima-
tion variance and reduced power.

I explain and demonstrate how these issues are avoided in
unconflated models.
From an immediately practical standpoint, this article aims to en-

courage applied researchers to disaggregate level-specific effects of
level-1 variables in practice. However, even for researchers who are
already accustomed to such disaggregation, it is my hope that this
article will have didactic utility in explaining seemingly aber-
rant behavior that can be encountered when fitting multilevel
models, or when interpreting results from published research.
That is, this article seeks to clarify that researchers should be
cautious in interpreting conflated model results not only in terms
of the estimated conflated effects themselves, but also the esti-
mated random effect variances and any metrics that utilize these
estimates (e.g., intraclass correlation coefficients and R-squared
measures), as well as inferences based on other fixed component
estimates in the model.
The remainder of the article proceeds as follows. I first, at a pop-

ulation level, describe and illustrate within-cluster versus between-
cluster error terms. I then compare these errors from a model that
disaggregates level-specific fixed effects to one that fails to do so,
and use this to provide a mathematical derivation showing how the
error variances from the conflated model can be distorted. I then
give specific analytic explanations of the four aforementioned
issues induced by conflating. For each issue, I provide an illustra-
tive example (R scripts and simulated data sets are provided in the
online supplemental materials), as well as simulation results that
demonstrate the issue across repeated samples (the examples and
simulation results can be read independently—the former will be
most useful for readers seeking a pedagogical tutorial, whereas the
latter will be most useful for readers interested in the extent of dis-
tortion to expect under specific generating conditions). I will ini-
tially consider random intercept models with fixed slopes; hence,
the first part of this article will focus on the impact of fixed confla-
tion, defined as imposing the constraint that the fixed components
associated with the within-cluster and between-cluster portions of
level-1 variables are exactly equal. I will then focus on random
slope models, discuss how random conflation—defined as impos-
ing the constraint that the random components of the within-cluster
and between-cluster portions of level-1 variables are exactly equal
—can cause further distortion, and investigate its impact via simu-
lation. In the Discussion, I provide recommendations, address cer-
tain modeling complexities not explicitly included throughout the
article, and explain how the results generalize to these situations.

Comparing Level-Specific Error Terms in Conflated
Versus Unconflated Models

Inherent to multilevel modeling is the inclusion of not only ob-
servation-level error terms (which are also included in standard

single-level regression), but also cluster-level error terms, both
defined shortly. The impact that conflation has on variance compo-
nent distortion can be understood by comparing these two error
terms from an unconflated model versus those from a conflated
model. I will first consider these models purely from a population
standpoint—hence, an important distinction will be made between
model errors (reflecting deviations between actual scores and
expected scores based on population parameters) and model resid-
uals (reflecting sample realizations or estimates of the population
errors).

Unconflated-x Model

The first multilevel model I consider is what I term the uncon-
flated-x model, which can be used to separately estimate the
within-cluster and between-cluster slopes associated with a level-1
independent variable:

yij ¼ c00 þ cbx•j þ cwðxij � x•jÞ þ u0j þ eij

eij � Nð0;r2Þ; u0j � N 0; s00ð Þ
(1)

Here, i denotes level-1 unit and j level-2 unit. Hence, yij denotes
the outcome for observation i nested within cluster j. The level-1
independent variable is given as xij and predicts y via its cluster
mean, x•j (entered as a level-2 predictor), as well as its cluster-
mean-centered (also commonly called group-mean-centered) ver-
sion, xij � x•j (entered as a level-1 predictor). The slope of x•j,2 cb,
denotes the between-cluster effect, whereas the slope of xij � x•j,
cw, denotes the within-cluster effect.3 The other fixed component,
c00, is the across-cluster average intercept. The level-1 error term,
eij, represents the within-cluster deviations of the observed scores

of y from the cluster-specific (or conditional) expected value of y,
c00 þ cbx•j þ u0j þ cwðxij � x•jÞ. Hence, the within-cluster error
variance is varðeijÞ ¼ r2. The level-2 error term, u0j, represents
the between-cluster deviations of the cluster-mean scores of y
from the across-cluster (or marginal) expected value of the clus-
ter-mean scores of y, given as c00 þ cbx•j. Hence, the between-
cluster error variance is varðu0jÞ ¼ s00.

4

In this unconflated-x model, there is a clear separation of the levels
of analysis in that the level-1 predictor, xij � x•j, varies exclusively
within-cluster and thus, logically, can only explain within-cluster/
level-1 outcome variance (i.e., variance in y scores within clusters),
whereas the level-2 predictor, x•j, varies exclusively between-cluster
and thus can only explain between-cluster/level-2 outcome variance
(i.e., variance in cluster-mean y scores across clusters). Therefore,
conceptually, the overall level-1 outcome variance can be cleanly

2 There must be some between-cluster variance in xij (i.e., variance in
x•j) for this model to be identified; otherwise, there would only be a within-
cluster effect of xij, cw (and in such a case, there is no risk of conflation).

3 In an effort to provide concise communication and to maintain
consistency with prior literature, I use the word “effect” here, but strictly
speaking, these slopes can reflect associations that are not causal.

4 An equivalent random-intercept model would involve entering both x
(in its raw form, or centered by any constant) and the cluster-mean of x as
predictors. This is termed a contextual effect model (Kreft et al., 1995;
Raudenbush & Bryk, 2002). For simplicity and without loss of generality, I
will here focus on the cluster-mean-centered version of this model.
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broken down into that which is accounted for (or “explained”) by
xij � x•j (i.e., varðcwðxij � x•jÞÞ ¼ c2wvarðxij � x•jÞ) and that which
is “unexplained” and instead accounted for by the level-1 error
term (i.e., varðeijÞ ¼ r2). Similarly, the overall level-2 outcome
variance can be broken down into that which is explained by x•j

(i.e., varðcbx•jÞ ¼ c2bvarðx•jÞ) and that which is instead accounted
for by the level-2 error term (i.e., varðu0jÞ ¼ s00).
As an illustration/visualization of level-specific effects and

error terms, Figure 1 shows a hypothetical subset of data from an
unconflated-x model and the corresponding regression lines that
depict the within-cluster and between-cluster effects. Figure 1,
Panel A (first considering only the solid lines in the plot) demon-
strates the positive within-cluster effect, whereas Figure 1, Panel
B (the solid line), in contrast, demonstrates the negative
between-cluster effect (this situation is consistent, for instance,
with the earlier-described example of reaction time predicting
accuracy). Figure 1 also provides an illustration of the two error
terms in the unconflated-x model. An example level-1 error, eij,

is highlighted in Panel A, showing the difference between a sin-
gle observation’s actual outcome and its cluster-specific
expected outcome. An example level-2 error, u0j, is highlighted
in Panel B, showing the difference between a cluster’s actual
mean outcome and their model-predicted mean outcome. Taken
together, for each panel, the variance in the expected scores
(defined by the regression lines) is the level-specific variance
explained by the predictor, and the variance of the error terms is

the remaining level-specific variance (i.e., that which is not
explained by the predictor).

Conflated-x Model

What I term here the conflated-x model is nested within the
unconflated-x model, imposing the constraint that the level-specific
effects of x are equivalent by setting cb ¼ cw:

yij ¼ c�00 þ u�0j þ ccx•j þ ccðxij � x•jÞ þ e�ij

e�ij � Nð0;r2�Þ; u�0j � Nð0; s�00Þ
(2)

Here cc is called the conflated effect, in that it simultaneously
represents the within-cluster effect (i.e., slope of xij � x•j) and
the between-cluster effect (i.e., slope of x•j). For the other
model terms, I use asterisks to distinguish them from the
unconflated model in Equation 1. A mathematically equivalent
way of writing this conflated model is to leave x in its raw
form, as follows:

yij ¼ c�00 þ u�0j þ ccxij þ e�ij (3)

Hence, entering x in its raw form (or centering it by any constant
value, such as the grand mean), as is typical of current practice, cre-
ates the implicit assumption that level-specific effects are equal.

Figure 1
Heuristic Illustration of Level-1 Versus Level-2 Errors From Unconflated Versus Conflated Models

Note. The solid lines in Panel A reflect the within-cluster effect from the unconflated-x model, whereas the solid line in Panel B reflects the between-cluster
effect from the unconflated-x model. The dashed line (in both panels) represents the conflated effect (an ambiguous blend of the within-cluster and between-
cluster effects) from the conflated-x model. Hence, example level-1 and level-2 errors from the unconflated-x model are given by eij and u0j, respectively,
and example level-1 and level-2 errors from the conflated-x model are given by e�ij and u�0j, respectively. Note that, without loss of generality, data are pre-
sented on the raw metric (rather than being centered) for illustrative visualization purposes. See the online article for the color version of this figure.
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Here, there is no longer a clear separation of the levels of analysis—
the uncentered predictor x varies both within- and between-cluster,
and its single conflated effect is used to simultaneously explain both
the within- and between-cluster outcome variance.
One result that is well-established in the current literature is that

the conflated slope, cc, is some weighted average of the two level-
specific effects, cw and cb. Hence, generically:

cc ¼ kcb þ ð1� kÞcw (4)

where k is a number from 0 to 1 and represents the degree to
which the conflated effect is weighted toward the between-cluster
effect. There is not an established closed-form population expres-
sion for k general to any MLM (for specific sample-level case
examples, see, e.g., Raudenbush & Bryk, 2002; Scott & Holt,
1982), but it is known that having more precision in estimating cw
relative to cb will lead to a small k, whereas having more precision
in estimating cb relative to cw will lead to a large k (Raudenbush
& Bryk, 2002). Because, by definition, there are always more
level-1 units than level-2 units in hierarchical data sets, k will typi-
cally be closer to 0 than 1, and hence, the conflated effect will tend
to be closer to cw than cb.
An illustration of this conflated slope is also found in Figure 1

and is given by the dashed regression lines. Hence, in Panel A, the
dashed regression lines are equal to c�00 þ u�0j þ ccxij, and in Panel

B, the dashed regression line is c�00 þ ccx•j. As is apparent in this
plot, the conflated effect is somewhere in the middle of the within-
cluster and between-cluster effects (per Equation 4). This con-
flated effect thus provides a distorted view of the association
between x and y by forcing the (positive) within-cluster effect and
the (negative) between-cluster effect to be equivalent.
The novel result of this article, however, pertains to the rela-

tionship between the errors of the two models, eij and u0j versus

e�ij and u�0j. Figure 1, Panel A provides a visualization of the

conflated level-1 error, e�ij. As can be gleaned from the plot, e�ij
is equal to the unconflated level-1 error, eij, plus the difference

in the cluster-specific expectation from the unconflated-x model
versus the conflated-x model. A proof of this is provided in Ap-
pendix A, yielding the following expression for the conflated
level-1 error:

e�ij ¼ eij þ ðcw � ccÞðxij � x•jÞ (5)

Similarly, as illustrated in Figure 1, Panel B, the conflated level-2
error, u�0j, is equal to the unconflated level-2 error, u0j, plus the dif-

ference in the expected mean score from the unconflated-x model
and the conflated-x model. Hence, as shown in Appendix A, the
conflated level-2 error is:

u�0j ¼ u0j þ c00 � c�00 þ ðcb � ccÞx•j (6)

This thus yields the following level-1 and level-2 error variances
for the conflated-x model:

r2� ¼ r2 þ ðcw � ccÞ2varðxij � x•jÞ (7)

s�00 ¼ s00 þ ðcb � ccÞ2varðx•jÞ (8)

As shown in Equations 7 and 8, the error variances of the con-
flated-x model will be larger than those of the unconflated-x model—
more troubling though is the fact that, unlike the unconflated varian-
ces, when the underlying level-specific effects differ, the conflated
variances do not actually represent the portion of level-specific out-
come variance that is not explained by the predictor. The reason this
standard interpretation no longer holds is that, in the population, the
actual level-specific outcome variance is no longer equal to the simple
sum of variance explained by the level-specific portion of x and the
variance accounted for by the error term. In fact, as will be shown
later, often times the conflated error variance alone will be much
greater than the overall level-specific variance (this can be seen, for
instance, in Figure 1, Panel B, in which the across-cluster variance of
the u�0j s is greater than the across-cluster variance of the cluster means

of y). Instead, these conflated variances in Equations 7 and 8 reflect
not only the “true” unexplained variance (i.e., variances of eij and u0j)
but also the degree to which level-specific effects of x differ. Hence,
as is often described of the conflated slope, the variances from a con-
flated model are a sort of “uninterpretable blend” themselves. Second-
arily, taking together Equations 7 and 8 as well as Equation 4 clarifies
that there is a trade-off in that, holding all else constant, less distortion
in the level-1 error variance (i.e., more similarity in cw and cc) is asso-
ciated with more distortion in the level-2 variance (i.e., more discrep-
ancy in cb and cc), and vice versa (as demonstrated later).

A potential critique of this analytic result is that the error varian-
ces from the conflated-x model and the unconflated-x model are, in
some sense, representing two different things, and as such, perhaps
it is not too troubling that they differ both in value and in interpre-
tation. I would argue, however, that when level-specific effects
truly differ, the conflated-x model is definitively misspecified, and
the variances from this model have no useful interpretation, and
can negatively impact the model as a whole. To underscore this
position, I now present several unappreciated issues that result
from these conflated variances, and illustrate how fitting conflated
models can lead to aberrant and seemingly paradoxical results.

Issue 1: Conflating Level-Specific Effects Can Cause
Both Level-1 and Level-2 Error Variances to Increase

in the Population When Adding Predictors

In both single-level regression and MLM, researchers are accus-
tomed to the aforementioned concept that the error variance is, in
theory, that which is “unexplained” by the predictors included in
the model. Hence, conceptually, when adding a predictor to a
model whose slope is nonzero, the error variance should decrease,
as one is adding—not removing—information that can be used in
explaining variability in the outcome. In fact, in single-level
regression via ordinary least squares (OLS), the population error
variance mathematically cannot increase when adding a predictor
to the model, nor can the sample sum of squared residuals.5 As
explained and illustrated in this section, however, both the level-1

5 Using OLS in a sample, however, it is possible for a slight decrease in
the estimated residual variance after adding a predictor if the decrease in
sum of squared residuals is small and not outweighed by the decrease
in degrees of freedom (Hoffman, 2015; Rencher & Schaalje, 2007).
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and level-2 error variance in MLM can increase when adding a
predictor, in a way that can be mathematically explained by the
impact of conflating level-specific effects.
In terms of what has been established in prior literature, the first

is that level-2 residual variances (i.e., in a given sample, rather than
the population) in MLM can increase when adding a level-1 predic-
tor, in a way that is simply due to how maximum likelihood estima-
tion obtains an estimate for this variance (Hoffman, 2015; Lahuis
et al., 2014; Snijders & Bosker, 2012). Specifically, it is known that,
mathematically, the observed between-cluster outcome variation
will reflect not only true (population) differences across clusters, but
also sampling variability resulting from within-cluster variation. To
formalize this, consider the random-intercept-only model in which
there are no predictors and a total of three parameters—the fixed
component of the intercept, the level-1 variance (r2

null), and the
level-2 variance (s00;null). With equal cluster sizes (nj), the between-
cluster outcome variance is then given as:

varðy•jÞ ¼ s00;null þ r2
null

nj
(9)

Which thus implies

s00;null ¼ varðy•jÞ � r2
null

nj
(10)

(see also Snijders & Bosker, 2012, Chapter 3 for expressions not
assuming equal cluster sizes). Hence, obtaining estimates for the
level-2 variance via maximum likelihood involves subtracting
from the observed between-cluster outcome variance the estimated
within-cluster outcome variance divided by cluster size, which in
certain cases can lead to expected increases in the level-2 residual
variance after adding predictors. For instance, when adding a
level-1 predictor that exclusively varies within-cluster, this can
explain within-cluster outcome variance (leading to a decrease in
the level-1 residual variance), but will not explain any between-
cluster outcome variance, and hence, the estimate of the level-2
variance will increase. Though this type of increase in variance is
useful to understand, the increase resulting from this relationship
goes away as cluster size increases, and is distinct from that which
is the focus of the current article, that is, the impact on the error
variance in the population.
Second, some authors have additionally acknowledged that the

level-2 error variances can increase (in the population) when add-
ing a level-1 predictor with a conflated slope, providing examples
with corresponding explanations for this phenomenon (e.g., Gel-
man & Hill, 2007, p. 280; Hoffman, 2015, p. 407). The novelty of
the current article is that I (a) clarify specifically the degree to
which this increase in level-2 variance occurs as a direct mathe-
matical function of the underlying level-specific effects, and (b)
clarify that not only the level-2 error variance, but the level-1 error
variance can systematically increase when adding predictors.

Analytic Explanation of Level-2 Variance Increase

I will first consider the behavior of the level-2 error variance
increasing when adding a level-1 predictor with a conflated slope,

specifically in comparing the level-2 variance from the random-
intercept-only model (i.e., the null model with no predictors) to
that containing a level-1 predictor (i.e., the conflated-x model in
Equation 3). The null model level-2 variance, s00;null, represents
the overall between-cluster outcome variance, and assuming data
are generated from the unconflated-x model, s00;null is (Rights &
Sterba, 2019):

s00;null ¼ s00 þ c2bvarðx•jÞ (11)

When adding the level-1 predictor x to form the conflated-x
model, the change in the level-2 variance is then given as the dif-
ference between Equation 8 and 11:

s�00 � s00;null ¼ ððcb � ccÞ2 � c2bÞvarðx•jÞ (12)

As shown in Equation 12, the level-2 variance will increase going
from the null model to the conflated-x model whenever the squared
difference in the between-cluster and the conflated effect (i.e.,

ðcb � ccÞ2) is greater than the squared between-cluster effect (i.e.,
c2b), as this implies Equation 12 is positive. In contrast, when going
from the null model to the unconflated-x model, the change in
level-2 error variance would never be positive (as s00 minus Equa-
tion 11 is at most 0).

Analytic Explanation of Level-1 Variance Increase

The same concept holds for the level-1 variance—if Equation 1
is the population model, the level-1 variance from the random-
intercept-only model (reflecting the overall within-cluster outcome
variance) is given as (Rights & Sterba, 2019):

r2
null ¼ r2 þ c2wvarðxij � x•jÞ (13)

When adding the level-1 predictor x to form the conflated-x model,
the change in the level-1 variance is then given as the difference
between Equation 7 and 13:

r2� � r2
null ¼ ððcw � ccÞ2 � c2wÞvarðxij � x•jÞÞ (14)

Equation 14 shows that the level-1 error variance will increase

whenever ðcw � ccÞ2 is greater than c2w. In contrast, for the uncon-
flated-x model, the change in level-1 error variance would never
be positive (as r2 minus Equation 13 is at most 0).

Illustration #1: Level-2 Variance Increasing

As a concrete illustration of the level-2 variance increasing, con-
sider an analysis of students nested within schools (colleges) in
which the outcome of interest is salary (i.e., starting salary for first
job after college, in thousands of dollars) and the predictor is grade
point average (GPA). Table 1 shows results from the random-inter-
cept-only model as well as the unconflated-x model and the con-
flated-x model (the dataset, which was simulated for pedagogical
purposes, and associated R scripts are available in the online
supplemental materials). As with all forthcoming illustrations,
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models were estimated via restricted maximum likelihood with
the lmer function in R (Bates et al., 2004). The unconflated-x
model reveals an estimated positive within-school effect (3.813),
reflecting the fact that, within a given school, students who have
higher GPAs tend to have higher starting salaries. However, there
is an estimated negative between-school effect (�2.605), which
could be explained by the fact that schools with low average
GPAs tend to have a greater number of students in programs that
give low grades but are associated with high starting salaries (e.g.,
engineering), and vice versa (see, e.g., Gottard et al., 2007).
Accordingly, both the level-1 and level-2 residual variances
decrease after adding the two level-specific components of GPA
(5.247 to 4.966 and 19.890 to 12.119, respectively), as the school-
mean-centered component explains part of the overall within-
school variation in salary and its school-mean component explains
part of the overall between-school variation in salary. However,
the conflated model slope estimate is, as expected, in the middle
of the estimated level-specific effects (�2.605 , 3.787 , 3.813),
and this leads to a large increase in the level-2 residual variance
(5.247 to 7.769), thus making it impossible to interpret this con-
flated variance as the portion of the overall between-school var-
iance that is unexplained. This variance instead reflects some
combination of the underlying unexplained between-school var-
iance that would be observed from an unconflated model, as well
as the degree of discrepancy in the underlying level-specific
effects (see Equation 8).

Illustration #2: Level-1 Variance Increasing

As a related illustration for the level-1 variance, here I consider
a longitudinal dataset consisting of repeated observations nested
within persons (i.e., persons serving as clusters), with the outcome
of symptoms (a measure of physical symptoms including pain, car-
diovascular, and others), predicted from both time (quantified by
person-mean-centered session number) and mood (a measure of
the degree of one’s negative mood at a given session; see Hoff-
man, 2015 for further description of these data).6 Table 2 provides
results from a baseline unconditional model that includes only ses-
sion, an unconflated model with person-mean-centered and per-
son-mean mood, and a conflated model with only grand-mean-
centered mood. Results from the unconflated model show that
there is little apparent within-person effect (as the slope of person-
mean-centered mood is small and nonsignificant; 0.154) but there
is a significant and positive estimate for the between-person effect
(2.013), suggesting that people who tend to have higher levels of

negative mood on average tend to also have worse symptoms on
average. Accordingly, the level-1 variance decreases only a little
bit from the baseline model (0.617 to 0.616), whereas the level-2
variance decreases more substantially (1.202 to 0.928). The con-
flated model, however, yields a conflated slope estimate for mood
(0.321), which, in turn, yields an increase in the level-1 variance
(0.617 to 0.618). Interestingly, the estimated conflated slope of
mood is over twice the magnitude of the estimated within-cluster
slope, but the conflated level-1 variance is larger than the uncon-
flated. This is because the conflated level-1 variance is not simply
the portion of within-person variation that is unexplained, but
rather is some combination of the unexplained within-person var-
iance and the degree of discrepancy in the underlying level-
specific effects (see Equation 7).

Issue 2: Conflating Level-Specific Effects Can Yield
Apparent Between-Cluster Random-Effect Variability

in Cases in Which There Is No Between-Cluster
Outcome Variability

In practice, researchers often seek to assess the degree of out-
come variability at the within-cluster level versus the between-
cluster level. For instance, if one finds there to be substantial
between-cluster variability, this can be used as an indication that
there is a meaningful amount of variance that could be explained
by adding level-2 predictors (Hoffman, 2015; Raudenbush &
Bryk, 2002; Rights & Sterba, 2019). Additionally, finding a large
degree of between-cluster variability is often used, in part, as a jus-
tification for utilizing multilevel models in the first place, or to
highlight the importance of considering individual differences (Lai
& Kwok, 2015; Peugh, 2010; Snijders & Bosker, 2012).

Such quantification of between-cluster variance, however, is
compromised when one is conflating level-specific effects. Indeed,
one important implication of the analytic results here is that it is
possible to observe a large degree of across-cluster differences
even in cases where there are truly no underlying between-cluster
differences. To illustrate, consider the residual intraclass correla-
tion coefficient (residual ICC, sometimes termed the conditional
ICC), which is defined as the ratio of the level-2 (random inter-
cept) variance to the sum of the level-1 and level-2 variances, that
is:

Table 1
Illustration #1: Level-2 Variance Increases When Adding Predictor for Conflated Model (Predicting Starting Salary From
College GPA)

Parameter Null model estimates Unconflated model estimates Conflated model estimates

Intercept 49.985 (SE = 0.194; p , .001) 49.988 (SE = 0.186; p , .001) 49.980 (SE = 0.231; p , .001)
Within-school slope of GPA — 3.813 (SE = 0.056; p , .001) —

Between-school slope of GPA — �2.605 (SE = 0.710; p , .001) —

Conflated slope of GPA — — 3.787 (SE = 0.056; p , .001)
Level-1 error variance 19.890 12.119 12.120
Level-2 error variance 5.247 4.966 7.769

Note. See salary_exdat.txt for dataset and illustrativeexamples.R for R script. Raw GPA centered to have a mean of 0. p-values based on t-statistics with
Satterthwaite degrees of freedom approximation.

6 Data for this specific example are available at https://www.pilesofvariance
.com/index.html.
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ICCr ¼ s00
s00 þ r2

(15)

This is a commonly used index in practice when communicating
the relative amount of between-cluster variance versus within-
cluster variance, controlling for the included covariates (e.g., Kuo
et al., 2013; Krull & MacKinnon, 1999; Nakagawa et al., 2017).7

Analytic Explanation of Distortion in Residual ICC

When conflating level-specific effects in the conflated-x model,
this residual ICC becomes distorted. Using Equations 7 and 8, the
conflated residual ICC can be written as

ICC�
r ¼

s�00
s�00 þ r2�

¼ s00 þ ðcb � ccÞ2varðx•jÞ
s00 þ ðcb � ccÞ2varðx•jÞ þ r2 þ ðcw � ccÞ2varðxij � x•jÞ

(16)

The degree to which this conflated ICC�
r differs from the uncon-

flated ICCr is hence a function of the squared differences between
cb and cc and between cw and cc, as well as the amount of var-
iance in x at the within-cluster level (varðxij � x•jÞ) and at the
between-cluster level (varðx•jÞ).
Whenever there are no between-cluster differences on the out-

come (i.e., the population cluster means are equivalent), the
unconflated ICCr is, by definition, equal to 0, as s00 ¼ 0. How-
ever, using the formula in Equation 16, the conflated ICC�

r would
be given as

ICC�
r j s00 ;cb¼0 ¼ c2cvarðx•jÞ

r2 þ c2cvarðx•jÞ þ ðcw � ccÞ2varðxij � x•jÞ
(17)

Hence, whenever the conflated effect is nonzero, in the population,
the conflated ICC�

r will erroneously indicate that there are between-
cluster differences.
This scenario is illustrated graphically in Figure 2, which shows

plots similar to those in Figure 1, but here such that there are no
mean differences between clusters on the outcome. However, as
shown in Panel A, here there is a strong negative within-cluster
effect, which in turn leads the conflated effect (depicted with the

dashed lines) to be negative. As shown in Panel B, despite the fact
that the true level-2 errors are all 0, the conflated errors are mark-
edly nonzero, which will naturally lead to an expected nonzero
ICC�

r .

Illustration #3: Large ICC ObservedWhen There Is No
Between-Cluster Variation

As an illustration of such residual ICC distortion, consider an
analysis of employees nested within companies and years spent
working at company (yearsworked) as the independent variable and
perceived authority within the company (authority) as the depend-
ent variable (dataset and R script are available in the online
supplemental materials). Here, the data (which were, again, simu-
lated for illustrative purposes) have only chance outcome variability
across companies (i.e., in the population, companies had the same
average perceived level of authority across workers). As shown in
Table 3, the unconflated model suggests a positive within-company
effect, but a negligible (and nonsignificant) between-company
effect (as expected, because there is almost no between-company
outcome variance to explain), and correctly suggests that there is no
apparent residual between-company variability (the residual ICC is
exactly equal to 0). The conflated-x model, on the other hand,
reveals a distorted view of both the effect of time spent working as
well as the degree of between-company variability—here, the resid-
ual ICC suggests that over one fourth of the total unexplained var-
iance is at the between-company level (residual ICC is 0.272),
driven exclusively by the discrepancy in the within-company and
between-company effects of yearsworked.

Issue 3: Conflating Level-Specific Effects Can Cause
Severe Distortion in R-Squared Measures

Thus far, I have focused on how variance distortion can com-
promise estimation and inferences related directly to the variances
themselves. It is important to realize, however, that these variances
are often involved in the computation of distinct, but substantively
important metrics—in particular, R-squared measures of explained
variance. Even for researchers who aren’t directly interested in
quantifying the degree of random effect variability, distortion in

Table 2
Illustration #2: Level-1 Variance Increases When Adding Predictor for Conflated Model (Predicting Level of Symptoms From Mood)

Parameter Unconditional model estimates Unconflated model estimates Conflated model estimates

Intercept 1.294 (SE = 0.113; p , .001) 1.288 (SE = 0.100; p , .001) 1.293 (SE = 0.109; p , .001)
Slope of session �0.021 (SE = 0.025; p = .398) �0.021 (SE = 0.025; p = .408) �0.020 (SE = 0.025; p = .419)
Within-person slope of mood — 0.154 (SE = 0.128; p = .231) —

Between-person slope of mood — 2.013 (SE = 0.379; p , .001) —

Conflated slope of mood — — 0.321 (SE = 0.122; p = .009)
Level-1 error variance 0.617 0.616 0.618
Level-2 error variance 1.202 0.928 1.123

Note. See illustrativeexamples.R for R script. Raw mood centered to have a mean of 0. p-values based on t-statistics with Satterthwaite degrees of free-
dom approximation.

7 As a preliminary step in MLM, researchers often utilize the Equation
15 formula for a random-intercept-only model, commonly calling this the
ICC. The forthcoming issues I address are relevant specifically for
quantifying ICC (or just random effect variance more generally) in models
with covariates, not for the null model ICC.
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R-squared can nonetheless provide misleading and inaccurate esti-
mates of the importance (in terms of variance explained) for the fixed
components of the model. I will hence here restrict focus to measures
that are commonly used in psychological applications to quantify the
variance explained specifically by the fixed effects (for a discussion
on the utility of using a broader framework utilizing a full decompo-
sition of outcome variance, see Rights & Sterba, 2019).
Some authors have previously acknowledged the seemingly pecu-

liar behavior that certain R-squared estimates can sometimes
decrease with the addition of predictors, or can even be negative
when computed for a single model (e.g., Lahuis et al., 2014; Snijders
& Bosker, 2012), attributing this to the increase in level-2 residual
variances that can occur when adding predictors (explained earlier
with reference to Equation 10). Here, I extend this work by showing
that the degree to which R-squared values decrease in the population
when adding predictors (or are negative to begin with) can be under-
stood mathematically through the impact of conflation, and that this

can occur for both total and level-specific R-squared measures. I also
underscore that such negative estimates are just one realization of the
more general distortion caused by conflation.

Analytic Explanation of Distortion in R-Squared

In Table 4, I list a set of commonly used R-squared measures for
MLMs, define each, and make note of the specific way conflation
will distort the measure (with relevant derivations provided in Ap-
pendix B). This table includes total measures—which quantify the
proportion of total variance explained—as well as between-cluster
and within-cluster measures—which quantify between-cluster and
within-cluster variance explained, respectively. As noted in Column
4, certain measures will be underestimated when there is conflation;
however, despite the fact that the conflated variances are in general
overestimated (conceptually consistent with an underestimated R-
squared), certain R-squared measure can also be overestimated.

Table 3
Illustration #3: Large Residual ICC Observed in Conflated Model When No True Between-Cluster Variance Actually Exists (Predicting
Perceived Authority From Years Worked)

Parameter Unconflated model estimate Conflated model estimate

Intercept 6.027 (SE = 0.062; p , .001) 5.990 (SE = 0.053; p , .001)
Within-company slope of yearsworked 0.644 (SE = 0.013; p , .001) —

Between-company slope of yearsworked �0.010 (SE = 0.017; p = .549) —

Conflated slope of yearsworked — 0.593 (SE = 0.013; p , .001)
Level-1 error variance 1.300 1.308
Level-2 error variance 0.000 0.488
Residual ICC .000 .272

Note. See authority_exdat.txt for dataset and illustrativeexamples.R for R script. Raw yearsworked centered to have a mean of 0. p-values based on t-sta-
tistics with Satterthwaite degrees of freedom approximation.

Figure 2
Heuristic Illustration in Which a Large Degree of Between-Cluster Random-Effect Variance Would be Observed for a Conflated Model
Even When There Is No Between-Cluster Outcome Variance

Note. See Figure 1 note for description of each line. See the online article for the color version of this figure.
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Additionally, as noted in Column 4, under specific conditions, cer-
tain measures will have negative conflated population values, par-
ticularly the measures that are computed as a proportion reduction
in residual variance going from the random-intercept-only to the
full model (namely R2

SB, R
2
L1, and R2

L2), which follows from the ear-
lier discussion of variances increasing when adding predictors.

Illustration #4: Distortion in R-Squared Measures

To illustrate the distortion in R-squared measures in conflated
models, for each of the earlier-presented examples and models
(GPA predicting salary, mood predicting symptoms, yearsworked
predicting authority), Table 5 shows the estimates of the R-
squared measures from Table 4. The discrepancy between the con-
flated and unconflated versions of these estimates are consistent
with the analytic results noted in the fourth column of Table 4, and
whereas the unconflated model yields sensible values for all meas-
ures, the conflated models give some values below 0 (e.g., an

estimate of R2
L2 of �.480 and an estimate of R2

L1 of �.002). Note
also that the total and between-cluster measures are markedly dif-
ferent across the conflated and unconflated models, whereas the
within-cluster measures are fairly similar (this pattern will also be
observed across repeated samples in the forthcoming simulation).

Issue 4: Increased Variance in Estimation for Other
Fixed Components in the Model

Historically, even researchers who are aware that conflated slopes
can reflect an ambiguous blend of within-cluster and between-cluster
effects may still specify such slopes in several circumstances: (a)
when there is no substantive interest in disaggregating level-specific
effects of a certain level-1 variable; (b) when there is no theoretical
reason to believe these effects differ; and (c) when certain level-1
variables are simply seen as control variables. This practice echoes
many methodological recommendations (mentioned earlier). Recent
work has clarified that specifying a conflated slope—even for a

Table 4
Distortion in R-Squared Measures Induced by Conflation

Measure Formula What this measure quantifies Impact of conflation

Total R-squared measures

R2
SB (Snijders & Bosker,
2012) 1� s00 þ r2

s00;null þ r2
null

Proportion of total variance explained
by all predictors via fixed compo-
nents of slopes

Values will be systematically too small;
negative conflated values when
ðc2b � ðcb � ccÞ2ÞICCxis less than
ðc2w � ðcw � ccÞ2ÞðICCx � 1Þ

R2ðf1Þ
t (Rights & Sterba,
2019)

c2wvarðxij � x•jÞ
c2wvarðxij � x•jÞ þ c2bvarðx•jÞ þ s00 þ r2

*
Proportion of total variance explained
by the level-1-varying portion of
predictors via fixed components of
slopes

Values can be either systematically too
small or too large; magnitude relative

to R2ðf2Þ
t driven exclusively by ICCx

R2ðf2Þ
t (Rights & Sterba,
2019)

c2bvarðx•jÞ
c2wvarðxij � x•jÞ þ c2bvarðx•jÞ þ s00 þ r2

*
Proportion of total variance explained
by the level-2-varying portion of
predictors via fixed components of
slopes

Values can be either systematically too
small or too large; magnitude relative

to R2ðf1Þ
t driven exclusively by ICCx

Within-cluster R-squared measures

R2
L1 (Raudenbush & Bryk,
2002)

r2
null � r2

r2
null

Proportion of level-1 variance
explained by the level-1-varying
portion of predictors via fixed
components of slopes†

Values will be systematically too small;
negative conflated values when c2w is
less than ðcw � ccÞ2

R2ðf1Þ
w (Rights & Sterba,
2019)

c2wvarðxij � x•jÞ
c2wvarðxij � x•jÞ þ r2

*
Proportion of level-1 variance
explained by the level-1-varying
portion of predictors via fixed
components of slopes

Values can be either systematically too
small or too large

Between-cluster R-squared measures

R2
L2 (Raudenbush & Bryk,
2002)

s00;null � s00
s00;null

Proportion of level-2 variance
explained by the level-2-varying
portion of predictors via fixed
components of slopes†

Values will be systematically too small;
negative conflated values when c2b is
less than ðcb � ccÞ2

R2ðf2Þ
b (Rights & Sterba,
2019)

c2bvarðx•jÞ
c2bvarðx•jÞ þ s00

*
Proportion of level-2 variance
explained by the level-2-varying
portion of predictors via fixed
components of slopes

Values can be either systematically too
small or too large

Note. See derivations and further detail in Appendix B. Note that the sum of R2ðf1Þ
t and R2ðf2Þ

t is termed R2ðf Þ
t and is equivalent to the marginal measure

from Nakagawa and Schielzeth (2013). Total R-squared measures quantify the proportion of the total (i.e., both within and between) variance that is
explained. Within-cluster R-squared measures quantify the proportion of the within-cluster/level-1 variance that is explained. Between-cluster R-squared
measures quantify the proportion of the between-cluster/level-2 variance that is explained.
* Equations provided here for the conflated-x model in Equation 1 (for general matrix-based formulas, see Rights & Sterba, 2019, 2021).
† Definition holds only for fixed slope models; in random slope models, these can quantify variance explained by predictors via both fixed and random
components of slopes (Rights & Sterba, 2019, 2021).
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control variable—can induce bias in the slopes of other predictors in
the model (Rights et al., 2020). This, however, occurs only when the
level-1 predictors with conflated slopes have correlation of sufficient
magnitude with the other predictors of interest.
Here, I extend this recent work by clarifying that the distortion in

variances induced by conflation can adversely impact estimation of
slopes of other predictors in the model, even in cases in which there
is no correlation between the predictors with conflated slopes and
the other predictors. The reason this occurs is that, holding all else
constant, increased magnitude of the variance components leads to
increased variance in estimation of the fixed components (Rauden-
bush & Bryk, 2002; Snijders & Bosker, 2012). As I show in the
upcoming simulation, a single conflated slope included in the model
can lead to greatly increased variance in estimating slopes, and
hence reduced power.

Illustration #5: Increased Estimation Variance for
Other Model Terms

To illustrate, here I consider an analysis of patients nested within
hospitals (this simulated dataset and associated R script is available
in the online supplemental materials) in which the primary question
of interest is whether or not some hypothetical hospital-level pro-
gram designed to improve patient care (program; binary independ-
ent variable in which 1 = implements program and 0 = does not
implement program) is actually associated with higher patient-
perceived quality of treatment (quality). Here, this hospital-level

effect is also conditioned on patient-level socioeconomic status
(SES) to account for possible confounding. Table 6 provides results
from an unconflated model that includes as predictors program as
well as hospital-mean and hospital-mean-centered SES. The magni-
tude of the estimated within-hospital slope of SES is less than that of
the between-hospital slope; in this case, hospital-level SES may serve
as a proxy for the resources available for a given hospital, which may
be more impactful on patient care than within-hospital SES differen-
ces. The effect of program—conditioned on hospital-level SES—is
positive and significant at an alpha of .05 (0.215; p = .022). However,
in the conflated model that includes just program and (uncentered)
SES, because of the underlying disparate level-specific effects of
SES, the estimated random intercept variation is much greater than
that of the unconflated model (0.891 vs. 0.409). As a result, the
standard error for the slope of program is much larger in the con-
flated model (0.135 vs. 0.093), and the treatment effect is no longer
significant (p = .085 vs. p = .022), despite the fact that the conflated
model even has a slightly more positive estimate of the effect (0.235
vs. 0.215; here simply a result of sampling variability). In this exam-
ple, the data were generated with a positive effect of program, and
hence, the conflated model yields a crucial Type II error resulting
from the distortion in the estimated random intercept variation.

Simulation With Fixed Slopes

The results presented thus far have been based on hypothetical pop-
ulation quantities and single-sample illustrations; to supplement these,

Table 6
Illustration #5: Increased Estimation Variance and Standard Errors for Terms in Conflated Models (Predicting Quality of Care From
Program Implementation, Conditioning on SES)

Parameter Unconflated model estimate Conflated model estimate

Intercept 6.394 (SE = 0.064; p , .001) 6.384 (SE = 0.093; p , .001)
Slope of program 0.215 (SE = 0.093; p = .022) 0.235 (SE = 0.135; p = .085)
Within-hospital slope of SES 0.266 (SE = 0.014; p , .001) —

Between-hospital slope of SES 1.326 (SE = 0.070; p , .001) —

Conflated slope of SES — 0.286 (SE = 0.014; p , .001)
Level-1 error variance 1.075 1.076
Level-2 error variance 0.409 0.891

Note. See quality_exdat.txt for dataset and illustrativeexamples.R for R script. SES is standardized. p-values based on t-statistics with Satterthwaite
degrees of freedom approximation.

Table 5
Illustration #4: R-Squared Distortion in Conflated Models

Measure
Unconflated salary
model estimate

Conflated salary
model estimate

Unconflated symptoms
model estimate

Conflated symptoms
model estimate

Unconflated authority
model estimate

Conflated authority
model estimate

R2ðf1Þ
t

.303 .265 .001 .005 .401 .245

R2ðf2Þ
t

.019 .035 .151 .004 ,.001 .157

R2
SB .320 .209 .151 .043 .400 .172

R2ðf1Þ
w

.386 .383 .004 .014 .401 .360

R2ðf2Þ
b

.086 .113 .228 .006 1.000* .491*

R2
L1 .391 .391 .001 �.002 .400 .397

R2
L2 .054 �.480 .229 .066 Undefined* Undefined*

Note. See illustrativeexamples.R for R script. Salary, symptoms, and authority are dependent variables defined in the prior Illustrative Example sections.
* Values for these measures are atypical given that there was 0 estimated between-cluster variance in the null model; in practice, these measures wouldn’t
be useful in this circumstance.
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in this section, I provide corroborative simulation results that demon-
strate the distortion discussed throughout this article across repeated
samples. Here, I will emphasize the point that conflating a single
slope, even if it is not the slope of primary interest, can cause any of
the aforementioned issues. Thus, here I generate data from a model in
which there are two level-1 independent variables, and investigate the
impact of specifying one conflated effect (for the control variable, x1)
while disaggregating level-specific effects of the other variable (the
predictor of primary interest, x2). Hence, the generating model is

yij ¼ c00 þ u0j þ cbx1•j þ cwðx1ij � x1•jÞ þ cb2x2•j þ cw2ðx2ij � x2•jÞ þ eij

eij � Nð0;r2Þ; u0j � Nð0; s00Þ
(18)

Here, cw and cw2 are the within-cluster effects of x1 and x2, respec-
tively, and likewise cb and cb2 are the between-cluster effects of x1
and x2, respectively. The fitted models then include (a) the uncon-
flated model that disaggregates the level-specific effects of both x1
and x2 via cluster-mean-centering and adding the cluster-mean as
a separate predictor and (b) the conflated model that estimates
only a single slope for grand-mean-centered x1 (and thus con-
strains cw ¼ cb) but still disaggregates the effects of x2 (and thus
does not constrain cw2 ¼ cb2). Here, I specify fixed slopes and
assume cluster means are measured without error, but soon
address generalizations (e.g., to random slope models). All models
were fit using lmer (Bates et al., 2004) in R with restricted maxi-
mum likelihood estimation.
For each condition, I generated 1,000 samples from the model

in Equation 18. Across conditions, I manipulated both the within-
cluster and between-cluster effects of x1 across the following
range: {�2.5, �2, �1.5, �1, �0.5, 0, 0.5, 1, 1.5, 2, 2.5}. This
allowed for a variety of values quantifying the degree of confla-
tion, in that the difference between cw and cb ranged from �5 to
5, including 0 wherein the conflated model is correctly specified. I
held the within-cluster effect of x2 at 1 and the between-cluster effect
of x2 at �1; hence, both fitted models correctly disaggregated the dis-
parate level-specific effects of x2. I additionally held the fixed compo-
nent of the intercept at 1, the level-1 error variance at 14, and the
random intercept variance at 7. Both level-1 predictors were generated
such that their within-cluster component and their between-cluster
component each were standard normally distributed. Importantly, x1
and x2 were uncorrelated in the population; this allows us to isolate
the impact of the level-1 and level-2 variance distortion on the estima-
tion variance (and the associated power for testing) of cw2 and cb2 (if
the predictors were correlated, this could also induce bias in estima-
tion of cw2 and cb2 for the conflated model, as mentioned earlier). In
terms of sample size, I manipulated the average cluster size to be ei-
ther 3 (discrete uniformly distributed from 2 to 4), 7 (ranging from 5
to 9), or 50 (ranging from 45 to 55), and the number of clusters to be
either 50, 100, or 200.
Note that, in the forthcoming results, there was virtually zero

impact of the number of clusters. This is not surprising given that
changing the number of clusters (but not average cluster size) does
not change the amount of within-cluster versus between-cluster in-
formation, and hence does not affect the weighting described ear-
lier (Equation 4). I hence here supply results for 200 clusters (of
varying cluster size), but provide a full depiction of results in
Supplemental Appendix A.

In Figure 3, Panel A, the x-axis denotes the population differ-
ence in the within-cluster and between-cluster effects of x1 (i.e.,
cw � cb) and the y-axis the average estimated random intercept
variance across 1,000 repeated samples. The horizontal line at y =
7 denotes the generating level-2 variance, s00. From this plot, it is
clear that, across all cluster sizes, the conflated model overesti-
mates the level-2 variance whenever cw 6¼ cb, and the degree to
which it is overestimated is greater whenever there is greater dif-
ference between cw and cb. The extent to which there is overesti-
mation, however, is mitigated when the cluster size is smaller.
This is because, as cluster size increases, there is more within-
cluster information relative to the amount of between-cluster infor-
mation, causing the conflated effect to be weighted more toward
the within-cluster effect relative to the between-cluster effect, and
hence the degree of distortion (see Equation 8) is greater for the
level-2 variance at larger cluster sizes. In contrast, the unconflated
model provided accurate estimation across all conditions.

The Figure 3, Panel B plot is similar to that in Panel A, but here
showing results for the estimated level-1 variance. Again, provided
cw 6¼ cb, the level-1 variance will be overestimated in the conflated
model, whereas it is accurately estimated in the unconflated model.
In contrast to the results for the level-2 variance, however, the distor-
tion induced in estimating the level-1 variance is mitigated at larger
cluster sizes (and is virtually nonexistent at the largest cluster size),
because increasing cluster size leads to the conflated effect being
more similar to the within-cluster effect and hence yields less distor-
tion (see Equation 7). Hence, Figure 3 demonstrates the trade-off
mentioned earlier—the less that conflation distorts the level-1 var-
iance, the more it will distort the level-2 variance, and vice versa.
Furthermore, I note that the overall impact on the level-1 variance is
much less than that of the level-2 variance, which is obvious when
comparing the scale of the y-axes for both plots. The level-2 var-
iance is wildly distorted (e.g., at the extremes, the conflated model
yields values over three times the generating variance), whereas the
level-1 variance only marginally so.8

In Supplemental Appendix B, I discuss the full simulation results,
including an investigation of the extent to which the conflated model
is subject to the aforementioned Issues 1–4. In short, it is shown that,
as expected, these issues are avoided across all conditions for the
unconflated model, and are generally worsened in the conflated
model when level-specific effects differ to a greater extent.

Impact of Conflation in Random Slope Models

Thus far, I have made the simplifying assumption that all
slopes were fixed, so as to isolate the impact that fixed conflation
(i.e., implicitly setting cw ¼ cb) has on distorting variances.
However, in random slope models, there is also the potential for
random conflation, defined as placing an implicit equality

8 A nuance to the results in Figure 3, Panel B is that the overestimation
is less severe at the extremes of the x-axis. What is happening here is that
these generating conditions yield a large degree of within-cluster explained
variance (because the within-cluster effect is large at these conditions)
relative to the between-cluster explained variance, leading to more within-
cluster precision, and hence, the conflated effect being closer to the within-
cluster effect. Thus, though not a specific focus here, it is important to note
that the degree of within- vs. between-cluster explained variation can
impact the extent to which the conflated effect is weighted towards the
within-cluster vs. between-cluster effect (Raudenbush & Bryk, 2002).
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constraint on the within-cluster and between-cluster random
components (u’s) of the level-1 variable. Such random confla-
tion is a new concept that is not well recognized or understood,
but has been shown to result in erroneous interpretation and
inferences regarding across-cluster slope heterogeneity, as well
as biased standard errors for fixed effects (Rights & Sterba,
2020). In this section, I newly show that random conflation addi-
tionally distorts all other variance components—both at level-1
and level-2—similar to the distortion caused by fixed conflation.
To illustrate random conflation, here I present what I term the

fully conflated-x model, which is similar to the earlier conflated-x
model in Equation 3, but also includes a random component of x:

yij ¼ c�00 þ u�0j þ ccxij þ ucjxij þ e�ij
¼ c�00 þ u�0j þ ccðxij � x•j þ x•jÞ þ ucjðxij � x•j þ x•jÞ þ e�ij
¼ c�00 þ u�0j þ ccðxij � x•jÞ þ ccx•j þ ucjðxij � x•jÞ þ ucjx•j þ e�ij

(19)

This re-expression in Equation 19 demonstrates both the fixed con-
flation described earlier (in that the fixed components for xij � x•j

and x•j are implicitly constrained equal to cc) as well as random
conflation (in that random components for xij � x•j and x•j are im-
plicitly constrained equal to ucj). This is thus a more constrained
version of the following unconflated model with separate random
components for both xij � x•j and x•j:

yij ¼ c00 þ u0j þ cwðxij � x•jÞ þ cbx•j þ uwjðxij � x•jÞ þ ubjx•j þ eij
(20)

where uwj is the random component of xij � x•j and ubj that of
x•j. It is worth noting that researchers are largely unfamiliar
with this idea of including a random slope for a level-2 variable
—doing so amounts to modeling heteroscedasticity at level-2 in
allowing the across-cluster variance of the model-implied clus-
ter means of y to follow a quadratic pattern as a function of the
cluster means of x (Goldstein, 2010; Rights & Sterba, 2020;
Snijders & Bosker, 2012). Here, I thus term the model in Equa-
tion 20 the heteroscedastic unconflated-x model. This atypical
specification is necessary to present in order to define the
implicit assumptions made by the fully conflated-x model; spe-
cifically, the conflated model is nested within this unconflated
model, placing one constraint on the fixed portion, cw ¼ cb, and
three constraints on the random portion, varðuwjÞ ¼ varðubjÞ,
corrðuwj; ubjÞ ¼ 1, and corrðu0j; uwjÞ ¼ corrðu0j; ubjÞ (Rights &
Sterba, 2020).

Though fitting a model subject to both fixed and random con-
flation (i.e., that in Equation 19) is common, another typical
practice is to fit models that properly disaggregate the fixed com-
ponent of x but fail to disaggregate the random component. In
particular, the conventional random-conflated contextual effect
model, which adds a fixed slope of x•j to the model in Equation
19, is given as:

Figure 3
Simulation Results: Distortion in Level-1 and Level-2 Variances in the Conflated Model

Note. Horizontal line depicts the correct population level-1/level-2 variance. Number of clusters here is set at 200. See the online
article for the color version of this figure.
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yij ¼ c�00 þ u�0j þ cwxij þ cbcx•j þ ucjxij þ e�ij
¼ c�00 þ u�0j þ cwðxij � x•j þ x•jÞ þ cbcx•j þ ucjðxij � x•j þ x•jÞ þ e�ij
¼ c�00 þ u�0j þ cwðxij � x•jÞ þ ðcbc þ cwÞx•j þ ucjðxij � x•jÞ þ ucjx•j þ e�ij

(21)

This re-expression in Equation 21 shows that the fixed compo-
nent is disaggregated (noting that cbc is called the contextual
effect that represents the difference in the between-cluster and
within-cluster effects of x; Raudenbush & Bryk, 2002), but that
the random component is still conflated. In other words, this
model allows xij � x•j and x•j to have distinct fixed effects, but
(contradictorily) defines their individual influence via random
effects using the exact same random term (Rights & Sterba,
2020). This model is similarly nested within the heteroscedastic
unconflated-x model, now placing only the three aforementioned
constraints on the random portion.
It is important to note that: (1) the same exact distortion in

variance components resulting from fixed conflation (discussed
throughout the current article) still occurs in random slope mod-
els; and (2) random conflation can cause additional distortion in
these variance components. That is, discrepant level-specific
fixed components (wherein cw 6¼ cb) will yield distortion in the
level-1 variance and the random intercept variance of the fully
conflated-x model, and discrepant level-specific random compo-
nents (wherein uwj 6¼ ubj) will yield distortion in these variances
of both the fully conflated-x model and the random-conflated
contextual effect model. The mathematical basis of this distor-
tion induced by random conflation is discussed further in Ap-
pendix C.
To avoid random conflation, one option is to fit the uncon-

flated heteroscedastic random-slope model as written in Equa-
tion 20 (which is also analytically equivalent to a contextual
effect model that adds a random component of the cluster
mean of x; Rights & Sterba, 2020). However, conflation is also
avoided in the more typical, simpler model with a random
slope of cluster-mean-centered x that excludes the random
slope of the cluster mean of x. That is, one can assume homo-
scedasticity by fitting what I term here the homoscedastic
unconflated-x model, which is equal to Equation 20 when
excluding the ubj term (i.e., setting all ubj ¼ 0). This model is
simpler and thus less likely to run into convergence issues
than the heteroscedastic model in applied practice, but if there
is heteroscedasticity at level-2, this model would be underspe-
cified (and would yield biased standard errors for slopes of the
cluster mean of x•j; Rights & Sterba, 2020). However, this
does not imply that variances would otherwise be distorted—
conceptually, in this underspecified model, the intercept var-
iance (assuming all predictors have a mean of 0) would repre-
sent the remaining between-cluster variance that is not
accounted for by the cluster mean of x via its fixed component,
and should thus be equal to s00 þ varðubjÞvarðx•jÞ (Rights &
Sterba, 2021).

Simulation With Random Slopes

Noting that the distortion induced by random conflation is
less mathematically apparent and intuitive than that induced by
fixed conflation (see Appendix C), here I investigate the former
via a simulation in which data are generated from a model

similar to the heteroscedastic unconflated-x model in Equation
20, but with also a second level-1 predictor, x2, including a
fixed slope of x2ij � x2•j and of x2•j.9 The generating conditions
are identical to the earlier fixed slope simulation, but here
including the random effect variances varðuwjÞ and varðubjÞ,
holding constant the fixed components of x1 (cw ¼ 1, cb ¼ �1),
and increasing the smallest cluster size condition to range from
3 to 4 instead of 2 to 4 (to prevent unidentifiability when there
are many cluster sizes of 2 along with the random effects). I
compare three broad conditions of varðuwjÞ ¼ varðubjÞ ¼ 4,
varðuwjÞ ¼ 6 > varðubjÞ ¼ 2, and varðuwjÞ ¼ 2, varðubjÞ ¼ 6
while, for each of these, manipulating the correlation between
uwj and ubj.10 As for fitted models, I compare the random-
conflated contextual effect model to the heteroscedastic uncon-
flated-x model to the homoscedastic unconflated-x model, but
with each also including a fixed slope of x2•j and x2ij � x2•j. To
ensure comparability across models, all predictors are centered
to have a mean of 0, so that for each model the random inter-
cept variance, in theory, reflects the between-cluster variance
not accounted for by predictors via either fixed or random
effects (Rights & Sterba, 2021). As a clarification on how this
simulation differs from prior work, Rights and Sterba (2019)
looked at similar sets of conditions, but focused on distortion
in the random slope variance itself. Here, instead, I show how
random conflation additionally distorts the random intercept
variance, the level-1 variance, and estimation of slopes of addi-
tional predictors in the model.

Figure 4 provides results for the across-1,000-sample average
random intercept variance and level-1 variance for the three
models (holding number of clusters constant at 200, given that
results were virtually identical across the level-2 sample sizes;
full results provided in Supplemental Appendix A), with the y-
axis denoting the average estimate, the solid horizontal lines
denoting the population variance, and the x-axis denoting the
correlation between uwj and ubj. Focusing first on the varðuwjÞ ¼
varðubjÞ conditions and on the comparison between the hetero-
scedastic unconflated-x model and the random-conflated contex-
tual effect model, it is evident that, when the assumptions of the
latter are met (i.e., varðuwjÞ ¼ varðubjÞ and corrðuwj; ubjÞ ¼ 1),
both models adequately recover the generating level-1 and
level-2 variance. However, the more incorrect the assumption of
corrðuwj; ubjÞ ¼ 1 (i.e., as the correlation decreases going right-
to-left), the more upward bias there is for the random-conflated
model. The bias is much more pronounced for the level-2 var-
iance at larger cluster sizes, and more pronounced for the level-
1 variance at smaller cluster sizes, mirroring the pattern found
resulting from fixed conflation. Additionally, noting the scale of

9 If one were to also add random components to x2 for both the
generating and fitted models, this would be investigating the joint impact of
random conflation for the variable itself, x2, as well as random conflation of
the other variable, x1, on estimation of the slopes for x2 (the former
of which was investigated in Rights & Sterba, 2020, and the latter of which
is the focus here).

10 Note that there being distortion induced by random conflation is not
predicated on there being heteroscedasticity at level-2; if varðubjÞ is
excluded from the generating model (the more typical assumption),
distortion is still observed.
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the y-axis, the distortion that can occur in the level-2 variance is
more dramatic than that of the level-1 variance.
For the conditions in which varðuwjÞ > varðubjÞ and

varðuwjÞ, varðubjÞ, the pattern of distortion is very similar, with
the exception that there is still distortion in level-1 and level-2 var-
iance when corrðuwj; ubjÞ ¼ 1. In these conditions, the equal var-
iance assumption is never met, and when varðuwjÞ > varðubjÞ, the
random intercept variance can actually be slightly underestimated,
and when varðuwjÞ, varðubjÞ, the level-1 variance can be slightly
underestimated. Hence, though random conflation generally appears
to cause distortion in terms of upward bias, it can, in some specific
circumstances, induce downward bias.
Next, for the homoscedastic unconflated model, Figure 4 reveals

that, despite incorrectly modeling the random effect structure by
failing to include a random component for x•j, this model still
accurately recovers the overall amount of variance at level-1 and
level-2. Though this result is immediately evident for the level-1
variance (all conditions overlap with the solid line), for the level-2
variance, note that (as discussed previously) the random intercept
variance of the homoscedastic model is conceptually an estimate
of s00 þ varðubjÞvarðx•jÞ. This population value is given by the
dashed horizontal line, and it is clear that the homoscedastic model
accurately reflects this value across all conditions. Hence, though
this model could yield inaccurate standard errors for level-2 pre-
dictors when there is heteroscedasticity, it does not result in the
type of interpretational distortion discussed in this article—that is,
the level-1 and random intercept variances still accurately

represent the portion of level-specific variance that is not
accounted for by the included predictors.

Last, to investigate the impact of random conflation on esti-
mating the slope of a different predictor, in Figure 5, I provide
the empirical power in testing the slopes associated with x2. To
provide a discernable visual, the results are presented for the
varðuwjÞ ¼ varðubjÞ conditions, broken into separate plots for
each cluster size (full results available in Supplemental
Appendix A). Focusing first on the test of cb2 ¼ 0 for small
cluster sizes, the properly specified heteroscedastic uncon-
flated model has a little more power than the underspecified
homoscedastic unconflated model, and the power for each remains
fairly consistent across the range of corrðuwj; ubjÞ. In contrast, the
power for the random-conflated contextual effect model decreases as
corrðuwj; ubjÞ decreases—when corrðuwj; ubjÞ is high (i.e., the
assumption of corrðuwj; ubjÞ ¼ 1 is met or nearly met), the power is
comparable to that of the heteroscedastic unconflated model, but
when corrðuwj; ubjÞ is low, the power is lowest of the three models.
This same exact pattern holds for each cluster size condition, but is
much more pronounced at the largest cluster size wherein the ran-
dom intercept variance is more highly distorted in the random-con-
flated model. Interestingly, whereas increasing the cluster size
always increases power for both unconflated models, increasing
cluster size actually decreases power in the random-conflated model
when corrðuwj; ubjÞ is not close to 1. This can be explained by the
variance distortion being worse with increasing cluster size, as
shown in Figure 4.

Figure 4
Distortion of Level-1 and Random Intercept Variances in the Random-Conflated Contextual Effect Model

Note. See legend in Figure 3, noting that the X’s represent results from the homoscedastic unconflated model and smallest cluster size = average of 3.5
(number of clusters is 200). Solid horizontal lines denote the population variance; dashed horizontal lines denote s00 þ varðubjÞvarðx•jÞ, i.e., the portion of the
population level-2 variance that is not accounted by the cluster-mean of x via its fixed component. See the online article for the color version of this figure.
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The power in testing cw2 ¼ 0 shown in the second row of
Figure 5, focusing first on the small cluster size conditions,
mirrors the general pattern found for the power in testing
cb2 ¼ 0. However, in general there is little difference between
the three models, and the difference disappears when increas-
ing the cluster size (a supplemental simulation with a smaller
effect size such that power did not approach 1 showed this
same result). Hence, detriments in power of testing slopes of
level-1 predictors resulting from conflation will likely only
happen at small cluster sizes, and even under such conditions,
it is much less dramatic than that for testing slopes of level-2
predictors.
Overall, these simulation results show that random conflation

results in not only distortion in the random slope variance (as
shown in Rights & Sterba, 2020), but also of level-1 variance
and of random intercept variance. When avoiding conflation by
cluster-mean-centering level-1 predictors, the consideration of
whether or not to model heteroscedasticity at level-2 is a sepa-
rate issue than that discussed in the current article, as the distor-
tion discussed herein is automatically avoided even when this
term is omitted. Nonetheless, researchers might wish to at least
consider the possibility of heteroscedastic variances and investi-
gate it (e.g., via diagnostic plots; Snijders & Berkhof, 2008),

although it should be noted that there are additional methods to
account for such heteroscedasticity in cluster-mean-centered
models beyond adding a random component for the cluster-
mean of x (e.g., Hedeker et al., 2012).

Discussion

Summary

In this article, I provided analytic derivations, illustrative demon-
strations, and corroborative simulations to clarify the way in which
conflating level-specific effects in multilevel models can lead to
highly distorted variance components. I clarified several key impli-
cations of such distortion, namely that it can lead to: (1) both level-
1 and level-2 variance components increasing (in the population)
after adding predictors; (2) a large observed degree of between-
cluster random-effect variance in cases in which there is actually no
between-cluster variance; (3) biased and uninterpretable R-squared
measures; and (4) increased estimation variance and reduced power
in testing fixed components of the model. I further showed how
these issues are avoided by fitting models that properly disaggregate
level-specific effects.

Figure 5
Comparing Power in Random-Conflated Model Versus Heteroscedastic and Homoscedastic Unconflated Models

Note. Results presented for conditions in which varðuwjÞ ¼ varðubjÞ. Row 1 displays results with number of clusters = 100, row 2 displays results with
number of clusters = 50 (see Supplemental Appendix A for full results). See the online article for the color version of this figure.
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Recommendations for Practice

Given the results presented in this article, the first and most
obvious recommendation is that researchers not fit conflated models.
A straightforward way to avoid both fixed and random conflation is
to ensure level-1 predictors are cluster-mean-centered to estimate
within-cluster effects and, if between-cluster effects are also of inter-
est, to add the cluster-mean as a separate predictor. Though this rec-
ommendation is consistent with much established literature, it is at
odds with the notion that specifying conflated slopes is defensible
when there is no interest in separately considering within-cluster ver-
sus between-cluster effects, there is no reason to expect level-specific
effects to differ, or the level-1 variables are primarily thought to be
control variables—importantly, the issues discussed in this article
can occur under each of these three circumstances. Second, I recom-
mend that researchers use caution in interpreting results from prior
studies that fit conflated models. Importantly, however, one must be
cautious not only of the conflated slopes themselves, but also of the
variance components and any metrics that include these in their com-
putation (e.g., measures of intraclass correlation and R-squared), as
well as any inference made regarding the fixed components in the
model (particularly those of level-2 predictors).
There are, however, several caveats worth noting. The first is that

the distortion discussed in this article only occurs when level-specific
effects actually differ, and when level-specific effects are similar, the
distortion can be fairly small. Hence, if a researcher had a very strong
theoretical reason to believe level-specific effects are equivalent (and
perhaps also tested this empirically), fitting a conflated model might
not be too problematic. The second caveat is that conflation will cause
much greater distortion in level-2 variance components than level-1
variance components. Hence, in interpreting results from prior
research, metrics involving only the level-1 variance (e.g., within-
cluster R-squared measures) will likely not have been distorted too
greatly, and inferential testing of fixed components associated with
level-1 predictors that varied exclusively within-cluster was likely not
overly compromised. A third caveat is that, in certain cases, the
between-cluster variance in a level-1 predictor might be incredibly
small (e.g., in longitudinal settings, the time variable might be nearly
balanced), and for such predictors, conflation is unlikely to have
much of an impact. In such cases, the conflated effect would be nearly
identical to the within-cluster effect (Raudenbush & Bryk, 2002) and
the conflated variances would be similar to the unconflated variances.
As a final caveat/consideration, in this article, I focused on

situations in which the level-2 sample size (i.e., number of
clusters) allowed for reasonable estimation for slopes of clus-
ter means of each level-1 independent variable. In practice,
however, the level-2 sample size may sometimes be low in
comparison with the number of level-1 variables. In such
cases, researchers may be accustomed to fitting conflated mod-
els for parsimony (i.e., estimating a single slope per level-1
predictor) while retaining the between-cluster variance of the
level-1 predictors so that they can serve as controls for other
level-2 predictors of interest (Enders & Tofighi, 2007). When the
level-specific effects of level-1 variables are exactly equivalent, such
models give the most efficient estimation of both the effect of the
level-1 variable (Raudenbush & Bryk, 2002) as well as the slope of
other level-2 predictors (Rights et al., 2020). However, when these
level-specific effects do differ, the bias for the slopes of additional
level-2 predictors can actually be much worse than the bias induced

by failing to include a confounding level-1 variable altogether
(Rights et al., 2020), and, as discussed in this article, the increased
random intercept variance induced by conflating can further
adversely impact estimation.11 I thus recommend that even when the
level-2 sample size is small, it is better to still cluster-mean-center
level-1 variables rather than conflating their effects. If cluster means
of level-1 predictors cannot reasonably be included as well, and
there is risk of the cluster means confounding other between-cluster
relationships, researchers can note this as an inherent limitation of
making between-cluster inferences with small level-2 sample sizes.

Impact of Using Latent Versus Observed Cluster Means

An assumption made in all of the simulations was that the cluster
means of the level-1 independent variable were measured without
error, as is standard in traditional multilevel modeling. That is, I
assumed that the cluster mean of x could be accurately represented by
the observed sample mean. Though this is sometimes a reasonable
assumption, other times it is more appropriate to assume that some
underlying latent cluster mean—of which the observed mean is an
imperfect representation—is responsible for the between-cluster effect
(for further detail, see, e.g., Lüdtke et al., 2008). In the latter case, one
can model the cluster mean of x as a latent variable using multilevel
structural equation modeling (MSEM). I underscore, however, that the
general ideas and the population-level derivations provided in this arti-
cle hold in either case. For instance, in Equations 7 and 8, cw and cb
could theoretically represent the fixed components associated with ei-
ther observed or latent predictors. If one were to fit an unconflated
model while erroneously assuming cluster means were measured with-
out error, this would avoid the issues noted in the current article related
to conflation, but could induce a separate source of bias in the slopes
(Asparouhov &Muthén, 2019; Lüdtke et al., 2008).

Future Directions

Future research can more thoroughly investigate the impact
of the aforementioned complexities, for example, the choice
between using latent versus observed cluster means, and the re-
covery of different forms of heteroscedastic variances. Addi-
tionally, future work can examine the generality of the current
results to a broader class of latent variable models, outside the
scope of multilevel modeling specifically. Though the general
logic in the current article would apply in any context in which
errors are specified at the cluster-level and at the observation-
level, future work can explicitly examine how conflation might
impact estimation in structural equation models (such as latent

11 As a quick test, I simulated data using the same conditions of the
original simulation but with only 20 clusters of size 10 and 15 independent
level-1 predictors (each with an associated within-cluster effect of 1 and
between-cluster effect of �1), plus an additional (uncorrelated) level-2
predictor with variance 1 and slope of 1. The across-1,000-sample average
intercept variance was 65.097 for the conflated model, 7.286 for the
unconflated model with cluster means of all level-1 variables (the correct
population value was 7), and 22.161 for the unconflated model with no
cluster means of x (correct population value, given the lack of cluster
means to explain level-2 variance, was 22). Though the power in testing if
the slope of the level-2 predictor was different than 0 at alpha = .05 was
(unsurprisingly) very low for all models, it was worst for the conflated
model (.077 vs. .097 and .149, respectively).
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growth curve models) which are also used to accommodate
multilevel data structures.
As a final noted future direction, I highlight an important ques-

tion that is difficult to assess given the current state of the litera-
ture—how much has this distortion in variance components
compromised results in published research? From the results of
this article, it is clear that the distortion will be most pronounced
when level-specific effects of level-1 variables differ meaning-
fully, but what is less clear is the degree to which researchers
can expect such effects to differ in practice. Though certain
examples lend themselves to a theoretical expectation of dispar-
ate level-specific effects, others might be less obvious. Future
work can systematically investigate substantive contexts in
which level-specific effects are more likely to differ, for instance
by reviewing published literature that has decomposed these
effects, to determine the cases in which variance distortion has
historically been most problematic.
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Appendix A

Derivation of Variance Distortion Caused by Conflation in Random Intercept Models

In this appendix, I mathematically compare the level-1 and
level-2 error terms from the unconflated-x model in Equation 1
and the conflated-x model in Equation 2, and use this to, in
turn, show how the conflated-x model distorts both the level-1
and level-2 error variances. All terms herein are defined in the
article text. Here I assume all slopes are fixed, but provide sub-
sequent derivations for random slope models in Appendix C.

I start first with the comparison of level-2 errors, and pre-
liminarily note that, in the population, the model-implied clus-
ter means of the outcome for the unconflated-x model are:

y•j ¼ Ei j j½yij�
¼ Ei j j½c00 þ cbx•j þ u0j þ cwðxij � x•jÞ þ eij�
¼ Ei j j½c00� þ Ei j j½cbx•j� þ Ei j j½u0j� þ Ei j j½cwðxij � x•jÞ� þ Ei j j½eij�
¼ c00 þ cbx•j þ u0j

(A1)

Note that the “i j j” subscript refers to taking the expectation
across level-1 units (i.e., across i), holding level-2 unit constant
(i.e., conditioning on j). Taking this same expectation for the
conflated-x model yields:

y•j ¼ Ei j j½yij�
¼ Ei j j½c�00 þ ccx•j þ u�0j þ ccðxij � x•jÞ þ e�ij�
¼ Ei j j½c�00� þ Ei j j½ccx•j� þ Ei j j½u�0j� þ Ei j j½ccðxij � x•jÞ� þ Ei j j½e�ij�
¼ c�00 þ ccx•j þ u�0j

(A2)

Hence, the following equality holds in the population (i.e.,
assuming both models recover the underlying cluster means):

c�00 þ ccx•j þ u�0j ¼ c00 þ cbx•j þ u0j (A3)

Which implies that

u�0j ¼ u0j þ c00 � c�00 þ cbx•j � ccx•j

¼ u0j þ c00 � c�00 þ ðcb � ccÞx•j
(A4)

Which thus yields the following expression for the level-2 error
variance for the conflated-x model:

(Appendices continue)
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s�00 ¼ varðu�0jÞ
¼ varðu0j þ c00 � c�00 þ ðcb � ccÞx•jÞ
¼ varðu0j þ ðcb � ccÞx•jÞ
¼ varðu0jÞ þ varððcb � ccÞx•jÞ þ 2covðu0j; ðcb � ccÞx•jÞ
¼ s00 þ ðcb � ccÞ2x•j þ 0

¼ s00 þ ðcb � ccÞ2x•j

(A5)

Note that, across observations, c00 � c�00 is a constant value,
and hence can be removed from the variance expression.
I next consider the level-1 errors, and note that the observa-

tion-level outcome can be defined for the unconflated-x model
as Equation 1, and for the conflated-x model as Equation 2,
implying the following to hold in the population:

c�00 þ u�0j þ ccx•j þ ccðxij � x•jÞ þ e�ij

¼ c00 þ cbx•j þ u0j þ cwðxij � x•jÞ þ eij (A6)

Which implies that

e�ij ¼ eij þ c00 � c�00 þ cbx•j � ccx•j þ u0j � u�0j þ cwðxij � x•jÞ � ccðxij � x•jÞ
¼ eij þ c00 � c�00 þ cbx•j � ccx•j þ u0j � ðu0j þ c00 � c�00 þ ðcb � ccÞx•jÞ

þ cwðxij � x•jÞ � ccðxij � x•jÞ
¼ eij þ c00 � c�00 þ ðcb � ccÞx•j þ u0j

�ðu0j þ c00 � c�00 þ ðcb � ccÞx•jÞ þ ðcw � ccÞðxij � x•jÞ
¼ eij þ ðcw � ccÞðxij � x•jÞ (A7)

Which thus yields the following expression for the level-1 error
variance for the conflated-x model:

r2� ¼ varðe�ijÞ
¼ varðeij þ ðcw � ccÞðxij � x•jÞÞ
¼ varðeijÞ þ varððcw � ccÞðxij � x•jÞÞ þ 2covðeij; ðcw � ccÞðxij � x•jÞÞ
¼ r2 þ ðcw � ccÞ2varðxij � x•jÞ þ 0

¼ r2 þ ðcw � ccÞ2varðxij � x•jÞ
(A8)

Appendix B

Distortion in R-Squared Measures Induced by Conflating Level-Specific Effects

Here, I show mathematically how conflation can distort sev-
eral popular R-squared measures for MLM, focusing on those
that quantify variance attributable to the fixed components of
the model. In each section, I provide the formulas for both the
unconflated-x model in Equation 1 and the conflated-x model in
Equation 2, and take the difference of these expressions to
show the distortion induced by conflating level-specific effects.

Snijders and Bosker (2012) Total R-Squared

This measure was defined for the unconflated-x model in
Table 4, and in the population can be further written as:

R2
SB ¼ 1� s00 þ r2

s00;null þ r2
null

¼ 1� s00 þ r2

s00 þ c2bvarðx•jÞ þ r2 þ c2wvarðxij � x•jÞ

¼ s00 þ c2bvarðx•jÞ þ r2 þ c2wvarðxij � x•jÞ
s00 þ c2bvarðx•jÞ þ r2 þ c2wvarðxij � x•jÞ

� s00 þ r2

s00 þ c2bvarðx•jÞ þ r2 þ c2wvarðxij � x•jÞ

¼ c2bvarðx•jÞ þ c2wvarðxij � x•jÞ
s00 þ c2bvarðx•jÞ þ r2 þ c2wvarðxij � x•jÞ (B1)

For the conflated-x model this measure can be written in the
population as

R2�
SB ¼ 1� s�00 þ r2�

s00;null þ r2
null

¼ 1� s00 þ r2 þ ðcb � ccÞ2varðx•jÞ þ ðcw � ccÞ2varðxij � x•jÞ
s00 þ c2bvarðx•jÞ þ r2 þ c2wvarðxij � x•jÞ

¼ 1� s00 þ r2

s00 þ c2bvarðx•jÞ þ r2 þ c2wvarðxij � x•jÞ

� ðcb � ccÞ2varðx•jÞ þ ðcw � ccÞ2varðxij � x•jÞ
s00 þ c2bvarðx•jÞ þ r2 þ c2wvarðxij � x•jÞ

 !

¼ R2
SB �

ðcb � ccÞ2varðx•jÞ þ ðcw � ccÞ2varðxij � x•jÞ
s00 þ c2bvarðx•jÞ þ r2 þ c2wvarðxij � x•jÞ

 !

(B2)

Hence, the expression in the paratheses of Equation B2 repre-
sents the distortion induced by conflating. This expression in
paratheses is always going to be positive, implying that conflat-
ing will cause this measure to be systematically too small.
Here, I additionally consider conditions that would yield a

negative value for this measure in the population:

(Appendices continue)
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R2�
SB , 0

) 1� s00 þ r2 þ ðcb � ccÞ2varðx•jÞ þ ðcw � ccÞ2varðxij � x•jÞ
s00 þ c2bvarðx•jÞ þ r2 þ c2wvarðxij � x•jÞ , 0

) 1,
s00 þ r2 þ ðcb � ccÞ2varðx•jÞ þ ðcw � ccÞ2varðxij � x•jÞ

s00 þ c2bvarðx•jÞ þ r2 þ c2wvarðxij � x•jÞ

) s00 þ c2bvarðx•jÞ þ r2 þ c2wvarðxij � x•jÞ, s00 þ r2

þðcb � ccÞ2varðx•jÞ þ ðcw � ccÞ2varðxij � x•jÞ

) c2bvarðx•jÞ þ c2wvarðxij � x•jÞ, ðcb � ccÞ2varðx•jÞ
þ ðcw � ccÞ2varðxij � x•jÞ

) c2bvarðx•jÞ � ðcb � ccÞ2varðx•jÞ þ c2wvarðxij � x•jÞ
� ðcw � ccÞ2varðxij � x•jÞ, 0

) ðc2b � ðcb � ccÞ2Þvarðx•jÞ

þ ðc2w � ðcw � ccÞ2Þvarðxij � x•jÞ, 0

) ðc2b � ðcb � ccÞ2Þ
varðx•jÞ
varðxijÞ

þ ðc2w � ðcw � ccÞ2Þ
varðxij � x•jÞ

varðxijÞ , 0

) ðc2b � ðcb � ccÞ2ÞICCx

þðc2w � ðcw � ccÞ2Þð1� ICCxÞ, 0

) ðc2b � ðcb � ccÞ2ÞICCx ,

�ðc2w � ðcw � ccÞ2Þð1� ICCxÞ

) ðc2b � ðcb � ccÞ2ÞICCx , ðc2w � ðcw � ccÞ2ÞðICCx � 1Þ
(B3)

Thus, if ðc2b � ðcb � ccÞ2ÞICCx is less than ðc2w �
ðcw � ccÞ2ÞðICCx � 1Þ (where ICCx is the ratio of varðx•jÞ to
varðxijÞ), then R2�

SB will be negative. Note also that this is guar-
anteed whenever both c2b , ðcb � ccÞ2 and c2w , ðcw � ccÞ2.

Rights and Sterba (2019) Total R-Squared Measures

The first total Rights and Sterba (2019) measure, R2ðf1Þ
t , was

defined in the population in Table 4 for the unconflated-x
model, and can be defined in the population for the conflated-x
model as:

R2ðf1Þ�
t ¼ c2cvarðxij � x•jÞ

c2cvarðxij � x•jÞ þ c2cvarðx•jÞ þ s�00 þ r2 �

¼ c2cvarðxij � x•jÞ
c2cvarðxij � x•jÞ þ c2cvarðx•jÞ þ s00 þ ðcb � ccÞ2varðx•jÞ þ r2 þ ðcw � ccÞ2varðxij � x•jÞ

(B4)

Similarly, R2ðf2Þ
t was defined in the population in Table 4 for

the unconflated-x model and can be defined for the conflated-x
model as:

R2ðf2Þ�
t ¼ c2cvarðx•jÞ

c2cvarðxij � x•jÞ þ c2cvarðx•jÞ þ s�00 þ r2 �

¼ c2cvarðx•jÞ
c2cvarðxij � x•jÞ þ c2cvarðx•jÞ þ s00 þ ðcb � ccÞ2varðx•jÞ þ r2 þ ðcw � ccÞ2varðxij � x•jÞ

(B5)

Note that, given the potential distortion in both the numerator and
denominator, conflation can cause these measures to be either sys-
tematically too small or too large (as demonstrated via simulation).

Additionally, under conflation, the degree to which x
explains variance via fixed components at the within-cluster
versus at the between-cluster level will be driven exclusively
by the degree of within-cluster versus between-cluster variation
in x. Hence, the difference between R2ðf1Þ�

t and R2ðf2Þ�
t will not at

all reflect the underlying strength of the within-cluster and
between-cluster slopes, cw and cb. I can show this mathemati-
cally by computing the ratio of R2ðf1Þ�

t to R2ðf2Þ�
t (with the

assumption that neither are 0):

R2ðf1Þ�
t

R2ðf2Þ�
t

¼ c2cvarðxij � x•jÞ
c2cvarðxij � x•jÞ þ c2cvarðx•jÞ þ s�00 þ r2 � =

c2cvarðx•jÞ
c2cvarðxij � x•jÞ þ c2cvarðx•jÞ þ s�00 þ r2 �

¼ c2cvarðxij � x•jÞ
c2cvarðx•jÞ

¼ varðxij � x•jÞ
varðx•jÞ

(B6)

Hence, assuming varðxij � x•jÞ, varðx•jÞ, and cc are nonzero: (a) if
varðxij � x•jÞ > varðx•jÞ, then R2ðf1Þ�

t > R2ðf2Þ�
t ; (b) if varðxij � x•jÞ

, varðx•jÞ, then R2ðf1Þ�
t ,R2ðf2Þ�

t ; and (c) if varðxij�x•jÞ ¼ varðx•jÞ,
then R2ðf1Þ�

t ¼ R2ðf2Þ�
t . In contrast, for the unconflated-x model:

R2ðf1Þ
t

R2ðf2Þ
t

¼ c2wvarðxij � x•jÞ
c2wvarðxij � x•jÞ þ c2bvarðx•jÞ þ s00 þ r2

=
c2bvarðx•jÞ

c2wvarðxij � x•jÞ þ c2bvarðx•jÞ þ s00 þ r2

¼ c2wvarðxij � x•jÞ
c2bvarðx•jÞ

(B7)

Hence, the relative magnitude of R2ðf1Þ
t versus R2ðf2Þ

t will be
based on both the variance of x at the within-cluster versus
between-cluster levels as well as the strength of the underlying
within-cluster versus between-cluster effects, cw and cb.

Raudenbush and Bryk (2002) Between-Cluster
R-Squared

This measure was defined for the unconflated-x model in
Table 4, and in the population can be further written as:

(Appendices continue)
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R2
L2 ¼

s00;null � s00
s00;null

¼ s00 þ c2bvarðx•jÞ � s00
s00 þ c2bvarðx•jÞ

¼ c2bvarðx•jÞ
s00 þ c2bvarðx•jÞ

(B8)

For the conflated-x model this measure can be written in the
population as:

R2�
L2 ¼

s00;null � s�00
s00;null

¼ ðs00 þ c2bvarðx•jÞÞ � ðs00 þ ðcb � ccÞ2varðx•jÞÞ
s00 þ c2bvarðx•jÞ

¼ c2bvarðx•jÞ � ðcb � ccÞ2varðx•jÞ
s00 þ c2bvarðx•jÞ

¼ c2bvarðx•jÞ
s00 þ c2bvarðx•jÞ � ðcb � ccÞ2varðx•jÞ

s00 þ c2bvarðx•jÞ

 !

¼ R2
L2 �

ðcb � ccÞ2varðx•jÞ
s00 þ c2bvarðx•jÞ

 !

(B9)

The expression in the paratheses of Equation B9 will always be
positive, implying that conflation will cause this measure to
be systematically too small. In terms of when this measure will
be negative:

R2�
L2 , 0

) c2bvarðx•jÞ � ðcb � ccÞ2varðx•jÞ
s00 þ c2bvarðx•jÞ , 0

) c2bvarðx•jÞ � ðcb � ccÞ2varðx•jÞ, 0

) c2bvarðx•jÞ, ðcb � ccÞ2varðx•jÞ
) c2b , ðcb � ccÞ2

(B10)

Hence, R2�
L2 is negative whenever c

2
b is less than ðcb � ccÞ2.

Rights and Sterba (2019) Between-Cluster R-Squared

The between-cluster Rights and Sterba (2019) measure,
R2ðf2Þ
b , was defined in the population in Table 4 for the uncon-

flated-x model. This measure can be expressed in the popula-
tion for the conflated-x model as:

R2ðf2Þ�
b ¼ c2cvarðx•jÞ

c2cvarðx•jÞ þ s�00

¼ c2cvarðx•jÞ
c2cvarðx•jÞ þ s00 þ ðcb � ccÞ2varðx•jÞ

(B11)

Given the potential distortion in both the numerator and de-
nominator, conflating can cause this measure to be either
systematically too small or too large (as demonstrated via
simulation).

Raudenbush and Bryk (2002) Within-Cluster
R-Squared

This measure was defined for the unconflated-x model in
Table 4, and in the population can be further written as:

R2
L1 ¼

r2
null � r2

r2
null

¼ ðr2 þ c2wvarðxij � x•jÞÞ � r2

r2 þ c2wvarðxij � x•jÞ

¼ c2wvarðxij � x•jÞ
r2 þ c2wvarðxij � x•jÞ

(B12)

For the conflated-x model this measure can be written in the
population as

R2�
L1 ¼

r2
null � r2�

r2
null

¼ r2 þ c2wvarðxij � x•jÞ � ðr2 þ ðcw � ccÞ2varðxij � x•jÞÞ
r2 þ c2wvarðxij � x•jÞ

¼ c2wvarðxij � x•jÞ � ðcw � ccÞ2varðxij � x•jÞ
r2 þ c2wvarðxij � x•jÞ

¼ c2wvarðxij � x•jÞ
r2 þ c2wvarðxij � x•jÞ

 !
� ðcw � ccÞ2varðxij � x•jÞÞ

r2 þ c2wvarðxij � x•jÞ

 !

¼ R2
L1 �

ðcw � ccÞ2varðxij � x•jÞÞ
r2 þ c2wvarðxij � x•jÞ

 !

(B13)

The expression in the paratheses of Equation B13 will always
be positive, implying that conflation can cause this measure
to be systematically too small. In terms of when this measure
will be negative:

R2�
L1 , 0

) c2wvarðxij � x•jÞ � ðcw � ccÞ2varðxij � x•jÞ
r2 þ c2wvarðxij � x•jÞ , 0

) c2wvarðxij � x•jÞ � ðcw � ccÞ2varðxij � x•jÞ, 0

) c2wvarðxij � x•jÞ, ðcw � ccÞ2varðxij � x•jÞ
) c2w , ðcw � ccÞ2

(B14)

Hence, R2�
L1 is negative whenever c

2
w is less than ðcw � ccÞ2.

(Appendices continue)
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Rights and Sterba (2019) Within-Cluster
R-Squared

The within-cluster Rights and Sterba (2019) measure,
R2ðf1Þ
w , was defined in Table 4 for the unconflated-x model

and can be written in the population for the conflated-x
model as:

R2ðf1Þ�
w ¼ c2cvarðxij � x•jÞ

c2cvarðxij � x•jÞ þ r2 �

¼ c2cvarðxij � x•jÞ
c2cvarðxij � x•jÞ þ r2 þ ðcw � ccÞ2varðxij � x•jÞ

(B15)

Given the potential distortion in both the numerator and demon-
stration, conflation can cause this measure to be either systemati-
cally too small or too large (as demonstrated via simulation).

Appendix C

Derivation of Variance Distortion Caused by Both Fixed and Random Conflation in Random Slope Models

Here, I mathematically compare the level-1 errors terms and
the level-2 random intercept error terms from the heteroscedastic
unconflated-x model (Equation 20) and the fully conflated-x model
(Equation 19). This expands upon the derivation in Appendix A
by adding random slopes, and shows how these error terms can be
distorted not only as a function of fixed conflation (i.e., constrain-
ing the fixed components associated with xij � x•j and x•j to equal-
ity) but also random conflation (i.e., constraining the random
components associated xij � x•j and x•j to equality; Rights &
Sterba, 2020). To ensure comparability between the models, I will
assume all predictors are centered such that they have a mean of
0, and hence for both models the random intercept variance can,
in theory, be interpreted as the between-cluster variance that is not
accounted for 3 predictors 3 either fixed or random effects
(Rights & Sterba, 2021).
The model-implied cluster-means of the outcome for the het-

eroscedastic unconflated-x model is

y•j ¼ Ei j j½yij�
¼ Ei j j½c00 þ cbx•j þ u0j þ cwðxij � x•jÞ þ uwjðxij � x•jÞ þ ubjx•j þ eij�
¼ Ei j j½c00� þ Ei j j½cbx•j� þ Ei j j½u0j� þ Ei j j½cwðxij � x•jÞ�

þEi j j½uwjðxij � x•jÞ� þ Ei j j½ubjx•j� þ Ei j j½eij�
¼ c00 þ cbx•j þ ubjx•j þ u0j (C1)

And those of the fully conflated-x model is

y•j ¼ Ei j j½yij�
¼ Ei j j½c�00 þ ccx•j þ ucjx•j þ u�0j þ ccðxij � x•jÞ þ ucjðxij � x•jÞ þ e�ij�
¼ Ei j j½c�00� þ Ei j j½ccx•j� þ Ei j j½ucjx•j� þ Ei j j½u�0j� þ Ei j j½ccðxij � x•jÞ�

þEi j j½ucjðxij � x•jÞ� þ Ei j j½e�ij�
¼ c�00 þ ccx•j þ ucjx•j þ u�0j (C2)

Hence, if both models recover the population cluster means,
the following equality holds in the population:

c�00 þ ccx•j þ ucjx•j þ u�0j ¼ c00 þ cbx•j þ ubjx•j þ u0j (C3)

Which implies that

u�0j ¼ c00 � c�00 þ cbx•j � ccx•j þ u0j þ ubjx•j � ucjx•j

¼ c00 � c�00 þ ðcb � ccÞx•j þ u0j þ ðubj � ucjÞx•j
(C4)

Which yields the following expression for the level-2 error var-
iance for the fully conflated-x model:

s�00 ¼ varðu�0jÞ
¼ varðc00 � c�00 þ ðcb � ccÞx•j þ u0j þ ðubj � ucjÞx•jÞ
¼ varðu0j þ ðcb � ccÞx•j þ ðubj � ucjÞx•jÞ
¼ varðu0jÞ þ ðcb � ccÞ2varðx•jÞ þ varððubj � ucjÞx•jÞ

þ2ðcb � ccÞcovðu0j; x•jÞ þ 2covðu0j; ðubj � ucjÞx•jÞ
þ2ðcb � ccÞcovðx•j; ðubj � ucjÞx•jÞ

¼ varðu0jÞ þ ðcb � ccÞ2varðx•jÞ þ varððubj � ucjÞx•jÞ
þ2covðu0j; ðubj � ucjÞx•jÞ
þ2ðcb � ccÞcovðx•j; ðubj � ucjÞx•jÞ (C5)

For the level-1 errors, note first that the observation-level
outcome is defined for the heteroscedastic unconflated-x model
as Equation 19, and for the fully conflated-x model as Equation
20, implying the following to hold if both models recover yij:

c�00 þ u�0j þ ccðxij � x•jÞ þ ccx•j þ ucjðxij � x•jÞ þ ucjx•j þ e�ij
¼ c00 þ u0j þ cwðxij � x•jÞ þ cbx•j þ uwjðxij � x•jÞ þ ubjx•j þ eij

(C6)

Which implies that

e�ij ¼ eij þ c00 � c�00 þ u0j � u�0j þ cwðxij � x•jÞ � ccðxij � x•jÞ
þcbx•j � ccx•j þ ubjx•j � ucjx•j þ uwjðxij � x•jÞ � ucjðxij � x•jÞ

¼ eij þ c00 � c�00 þ u0j
�ðc00 � c�00 þ ðcb � ccÞx•j þ u0j þ ðubj � ucjÞx•jÞ
þ ðcw � ccÞðxij � x•jÞ þ ðcb � ccÞx•j þ ðubj � ucjÞx•j

þðuwj � ucjÞðxij � x•jÞ
¼ eij þ ðcw � ccÞðxij � x•jÞ þ ðuwj � ucjÞðxij � x•jÞ (C7)

(Appendices continue)
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Which thus yields the following expression for the level-1 error
variance for the fully conflated-x model:

r2� ¼ varðe�ijÞ
¼ varðeij þ ðcw � ccÞðxij � x•jÞ þ ðuwj � ucjÞðxij � x•jÞÞ
¼ varðeijÞ þ varððcw � ccÞðxij � x•jÞÞ þ varððuwj � ucjÞðxij � x•jÞÞ

þ 2ðcw � ccÞcovðeij; ðxij � x•jÞÞ
þ 2covðeij; ðuwj � ucjÞðxij � x•jÞÞ
þ 2ðcw � ccÞcovððxij � x•jÞ; ðuwj � ucjÞðxij � x•jÞÞ

¼r2 þ ðcw � ccÞ2varðxij � x•jÞ þ varðuwj � ucjÞvarðxij � x•jÞ
þ varðuwj � ucjÞE½xij � x•j�2

þ varðxij � x•jÞE½uwj � ucj�2

þ 2ðcw � ccÞðE½ðxij � x•jÞ2ðuwj � ucjÞ�
� E½xij � x•j�E½ðxij � x•jÞðuwj � ucjÞ�Þ

¼r2 þ ðcw � ccÞ2varðxij � x•jÞ þ varðuwj � ucjÞvarðxij � x•jÞ
þ 2ðcw � ccÞðE½ðxij � x•jÞ2�E½uwj � ucj�Þ

¼r2 þ ðcw � ccÞ2varðxij � x•jÞ þ varðuwj � ucjÞvarðxij � x•jÞ
(C8)

When there is only random (and not fixed) conflation, that is, in
the random-conflated contextual effect model (Equation 21),
these expressions simplify in that the c terms drop out.

The expressions derived here are notably less clean than those
derived for the fixed slope model (i.e., Equations 7 and 8). This is
driven primarily by the fact that the slopes associated with x are
no longer just fixed quantities, but instead random quantities that
follow an assumed distributional form. It is not mathematically
clear, for instance, the extent to which conflated random terms
might be correlated with the unconflated random terms or the
predictors, nor how well the conflated model would actually
recover the population outcome means in finite samples. Hence,
the specific patterns of distortion are primarily investigated via
simulation (see article text).
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