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On the Common but Problematic Specification of Conflated Random Slopes
in Multilevel Models

Jason D. Rightsa and Sonya K. Sterbab

aUniversity of British Columbia, Vancouver, BC, Canada; bVanderbilt University, Nashville, TN, Canada

ABSTRACT
For multilevel models (MLMs) with fixed slopes, it has been widely recognized that a level-1
variable can have distinct between-cluster and within-cluster fixed effects, and that failing
to disaggregate these effects yields a conflated, uninterpretable fixed effect. For MLMs with
random slopes, however, we clarify that two different types of slope conflation can occur:
that of the fixed component (termed fixed conflation) and that of the random compo-
nent (termed random conflation). The latter is rarely recognized and not well understood.
Here we explain that a model commonly used to disaggregate the fixed component—
the contextual effect model with random slopes—troublingly still yields a conflated
random component. Negative consequences of such random conflation have not been
demonstrated. Here we show that they include erroneous interpretation and inferences
about the substantively important extent of between-cluster differences in slopes, includ-
ing either underestimating or overestimating such slope heterogeneity. Furthermore, we
show that this random conflation can yield inappropriate standard errors for fixed effects.
To aid researchers in practice, we delineate which types of random slope specifications
yield an unconflated random component. We demonstrate the advantages of these
unconflated models in terms of estimating and testing random slope variance (i.e.,
improved power, Type I error, and bias) and in terms of standard error estimation for
fixed effects (i.e., more accurate standard errors), and make recommendations for which
specifications to use for particular research purposes.

KEYWORDS
Multilevel modeling;
random slopes; contextual
effect models; group mean
centering

Multilevel modeling (MLM; also known as hierarch-
ical linear modeling or linear mixed effects modeling)
is a popular and useful tool for analyzing nested data
structures, such as patients nested within clinician or
repeated observations nested within persons (e.g.,
Raudenbush & Bryk, 2002; Snijders & Bosker, 2012).
Using MLM, researchers can simultaneously examine
the influence of observation-level/level-1 predictors
(e.g., patient characteristics) and cluster-level/level-2
predictors (e.g., clinician characteristics) on an out-
come of interest.

In the methodological literature, it has been long
recognized that a level-1 variable can have both a
between-cluster and a within-cluster fixed effect in
MLM. To explain, consider that the observed value of
a level-1 variable for observation i nested within clus-
ter j is implicitly the sum of two distinct parts: (a) the
aggregate score for cluster j, and (b) observation i’s
deviation from the cluster-aggregated score. These two
parts can each exert an influence on a particular

outcome; the fixed effect of the former can be termed
the between-cluster fixed effect, and that of the latter
the within-cluster fixed effect. Importantly, these
effects need not be the same nor similar. Because
between-cluster and within-cluster fixed effects of a
level-1 variable may differ, it is widely recommended
to explicitly disaggregate them (e.g., Algina &
Swaminathan, 2011; Cronbach, 1976; Curran et al.,
2012; Curran & Bauer, 2011; Enders, 2013; Enders &
Tofighi, 2007; Hedeker & Gibbons, 2006; Hofmann &
Gavin, 1998; Raudenbush & Bryk, 2002; Snijders &
Bosker, 2012). An estimate that fails to disaggregate
level-specific effects can be said to be conflated (e.g.,
Preacher, 2011).

As a concrete example wherein the between-cluster
and within-cluster fixed effects of a level-1 variable
differ, Baldwin et al. (2007) examined patients nested
within clinicians and predicted patient outcomes from
therapeutic alliance, defined as the degree to which
the patient-clinician dyad engages in “collaborative,
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purposive work” (Hatcher & Barends, 2006). Fitting a
random-intercept/fixed-slope MLM, Baldwin et al.
(2007) found that clinicians (i.e., clusters) with a
higher mean therapeutic alliance across their patients
had lower mean depression among their patients; in
other words, there was evidence of a between-cluster
or between-clinician fixed effect. However, they also
found that, for patients who had the same clinician,
therapeutic alliance was not predictive of depression;
in other words, there was no evidence for a within-
cluster or within-clinician fixed effect. Thus, results
suggest the influence of therapeutic alliance to be real-
ized at the clinician-level, and the influence of
patient’s individual propensity to engage with clinicians
may not be as important. Indeed, Baldwin et al. (2007)
note that their findings imply “it would behoove thera-
pists to attend to their own contributions to the alli-
ance and focus less on characteristics of the patient
that impede the development of the alliance (p. 851).”
Prior to the Baldwin et al. (2007) study, earlier
researchers had estimated only a conflated effect of
therapeutic-alliance on patient outcomes (rather than
disaggregating effects) and had interpreted this con-
flated effect as indicating that patient-level differences,
rather than clinician-level differences, were responsible
for the relationship (e.g., Mallinckrodt, 2000). The dis-
aggregated-effect results from Baldwin et al. (2007),
however, suggest that earlier conclusions were subject
to an ecological fallacy (Robinson, 1950) wherein infer-
ences were inappropriately made regarding individuals
(patients) based on group (clinician) data.
Disaggregation helps researchers to avoid such fallacies
and make appropriate, level-specific inferences.

To disaggregate level-specific effects, researchers from
fields such as industrial-organizational psychology, soci-
ology, developmental psychology, and social epidemi-
ology have for many years used contextual effect models
(Burstein, 1980; see Enders, 2013 or Brincks et al., 2017
for historical reviews). Contextual effect models are
defined shortly in this paper, but are also detailed in
standard MLM textbooks (e.g., Raudenbush & Bryk,
2002; Snijders & Bosker, 2012). In the methodological
literature, the disaggregation afforded by the contextual
effect model has been discussed mainly for fixed slopes
(e.g., Boateng, 2016; Enders, 2013; Enders & Tofighi,
2007; Henry & Slater, 2007; Raudenbush & Bryk, 2002).
However, the very same points and explanations about
the utility and interpretation of contextual effect models
for disaggregation have often been directly applied to
random slope models—without mentioning how the
presence of random slopes affects the disaggregation
(e.g., Antonakis et al., 2019; Algina & Swaminathan,

2011; Brincks et al., 2017; Hamaker & Muth�en, 2019;
Hoffman & Stawski, 2009; Hox, 2010; Kreft et al., 1995;
Paccagnella, 2006; Snijders & Bosker, 2012).
Consequently, random-slope contextual effect models
have become widely used in practice by researchers
interested in disaggregating level-specific effects (e.g.,
Bliese & Britt, 2001; Deemer et al., 2017; Diez-Roux
et al., 2000; Espelage et al., 2003; Fischer et al., 2004;
Hoffman & Stawski, 2009; Kidwell et al., 1997; Lee,
2009; Lee & Bryk, 1989; Merlo et al., 2005; Poteat et al.,
2007; Schempf & Kaufman, 2012; Titus, 2004).

There are several problems underlying this current
situation:

1. It is not well understood that, for a level-1 vari-
able, there are two distinct types of slope confla-
tion that can occur in MLM (as will be detailed
later). Namely, there is fixed conflation—wherein
the fixed components of the slope’s level-specific
portions are implicitly set to equality—and there
is random conflation—wherein the random com-
ponents of the slope’s level-specific portions are
implicitly set to equality. The slope of a level-1
variable can be characterized as having only one
type of conflation (here termed partial conflation)
or having both types (here termed full conflation),
or having neither (here termed unconflation).
Although fixed conflation has been widely recog-
nized, random conflation has been almost entirely
ignored, and the exhaustive possibilities (full con-
flation vs. partial conflation vs. unconflation) have
not previously been fully enumerated.

2. There is little appreciation that contextual effect
models with random slopes have a conflated ran-
dom component of the slope, despite having an
unconflated fixed component of the slope.

3. There are negative consequences of fitting context-
ual effect models with conflated random slopes that
researchers need to understand. Such consequences
have not been explained or demonstrated and can
include erroneous interpretation and inferences.

4. Researchers need a full delineation of which random
slope MLM specifications yield an unconflated ran-
dom component, and need recommendations on
which to use for particular purposes.

This paper addresses each of these problems, with
the primary purpose of encouraging researchers to be
mindful of avoiding random conflation, similarly to
how researchers are already (largely) mindful of
avoiding fixed conflation. First we demonstrate the
full conflation of both the fixed and random
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component in a random slope MLM with an uncen-
tered (or grand-mean-centered) level-1 predictor. We
then show that the conventional random-slope con-
textual effect model is random conflated in that it dis-
aggregates the fixed component, but, importantly, fails
to disaggregate the random component of this level-1
predictor’s slope. Due to this random conflation, the
variance component for the slope of the level-1 pre-
dictor in this model actually reflects an uninterpret-
able blend of both slope heterogeneity of the level-1
predictor and intercept heteroscedasticity at level-2.
Therefore if, in the population, there is truly slope
heterogeneity but there is no intercept heteroscedastic-
ity, we show later that the (random-conflated) vari-
ance component estimate for the slope of a level-1
variable in a conventional random-slope contextual
effect model will, disturbingly, be weighted toward
zero. This, in turn, leads to heightened Type II errors
when testing slope heterogeneity for that level-l vari-
able, and also compromises inference for the fixed
effect of that level-1 variable. We fully detail this and
other negative consequences of such random confla-
tion, including different kinds of erroneous interpret-
ation and inferences pertaining to the estimated slope
variance along with inaccurate standard errors for fixed
effects. Next, noting that the concept of fixed and/or
random conflation is important to consider for any
MLM with level-1 variables, we provide a general tax-
onomy for any such model wherein we distinguish ran-
dom slope MLM specifications that are fully conflated
vs. partially conflated vs. unconflated. We then provide
evidence via simulation that these unconflated models
provide better Type I error, power, and bias for the
random slope variance and provide more accurate
standard errors for fixed effects than the widely used
conventional random-slope contextual effect model.
Finally, we illustrate the concepts presented with an
empirical example, provide recommendations for prac-
tice, and discuss avenues for future research.

Conflation of the fixed and random
components of the slope in a random slope
model

Uncentered MLM with random slopes: Conflation
of the fixed and random components

Consider a random slope MLM with an uncentered
(or grand-mean-centered)1 level-1 predictor; this

remains one of—if not the—most commonly used
random slope specification in applied practice (as
mentioned in literature reviews by, e.g., Curran et al.,
2012; Hamaker & Grasman, 2014; Hoffman, 2015).

yij ¼ c00 þ c10xij þ u1jxij þ u0j þ eij

eij�Nð0, r2Þ
u0j
u1j

� �
� MVN

0
0

� �
,

s00
s10 s11

� �� � (1)

Here, we are modeling a continuous outcome yij for
observation i nested in cluster j. The level-1 residual,
eij, is normally distributed with variance r2: The fixed
component of the intercept is c00 and the random
component (residual) of the intercept is u0j; likewise,
the fixed component of the slope of the level-1 vari-
able xij is c10 and the random component is u1j:

2 The
level-2 random components u0j and u1j are multivari-
ate normally distributed with covariance matrix Τ:
Note that this model is also presented in Table 1,
which we refer to later when comparing model
specifications.

To make the conflation in Eq. (1) apparent, in Eq.
(2) we equivalently express this model by substituting
xij ¼ xij � x�j þ x�j: That is, in Eq. (2) we replace xij
with the sum of its within-cluster portion (xij � x�j,
observation i’s deviation from the cluster-aggregated
score) plus its between-cluster portion (x�j, the aggregate
score for cluster j) . We underscore that this within-clus-
ter portion xij � x�j and between-cluster portion x�j can
represent fundamentally different constructs that are
each substantively important (see, e.g., Algina &
Swaminathan, 2011; Cronbach, 1976; Curran et al.,
2012; Curran & Bauer, 2011; Enders & Tofighi, 2007;
Hedeker & Gibbons, 2006; Hofmann & Gavin, 1998;
Raudenbush & Bryk, 2002; Snijders & Bosker, 2012).

yij ¼ c00 þ c10ðxij � x�j þ x�jÞ
þu1jðxij � x�j þ x�jÞ þ u0j þ eij

¼ c00 þ c10ðxij � x�jÞ þ u1jðxij � x�jÞ
þc10x�j þ u1jx�j þ u0j þ eij (2)

This re-expression in Eq. (2) shows that—as is already
well appreciated in the literature—there is conflation

1Grand-mean centering (or centering by any constant value) has no
impact on whether level-specific effects are disaggregated or conflated.
Hence we do not distinguish between uncentered vs. grand-mean-
centered predictors.

2Throughout this paper, to facilitate the distinction of fixed and random
conflation, we define the overall random slope of xij (shorthand: “the xij
slope”) as the combination of the fixed component—i.e., the c term—
and the random component—i.e., the u term (thus, the random slope, as
a whole, can be subject to either fixed or random conflation). This
nomenclature is consistent with that found in the MLM literature (see,
e.g., Snijders & Bosker, 2012, p. 92), but as a point of clarification, in
practice, often the term random slope refers specifically to what we term
here the random component of the slope.
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of the fixed component (here termed fixed conflation)
in that the fixed component of the slope of x�j (i.e.,
c10) is held equal to the fixed component of the slope
of xij � x�j (i.e., c10).

3 Hence c10 reflects an
“uninterpretable blend” (Cronbach, 1976) of within-
and between-cluster fixed effects, and will be a
weighted average of the two (Raudenbush & Bryk,
2002; Scott & Holt, 1982). Importantly—though not
well appreciated in the literature—Eq. (2) also shows
that there is conflation of the random component of
the slope (here termed random conflation) in that the
random component of the slope of xij � x�j (i.e., u1j) is
held equal to the random component of the slope of
x�j (i.e., u1j).

Contextual effect model with random slopes:
Unconflation of the fixed component but conflation
of the random component
Next we consider the conventional contextual effect
model with a random slope of xij, which continues to
be used frequently in applied practice (e.g., Deemer
et al., 2017; Hoffman & Stawski, 2009; Lee, 2009;
Schempf & Kaufman, 2012). From Eq. (2), we simply
add a fixed slope of x�j, given by c01 :

yij ¼ c00 þ c10xij þ c01x�j þ u1jxij þ u0j þ eij

eij�Nð0, r2Þ
u0j
u1j

� �
� MVN

0
0

� �
,

s00
s10 s11

� �� � (3)

This c01 is the contextual effect, that is, the fixed effect
of x�j controlling for xij (which can also be interpreted
as the between effect of xij minus the within effect of
xij). Re-expressing xij as the sum of its level-specific
parts then yields:

yij ¼ c00 þ c10ðxij � x�j þ x�jÞ
þc01x�j þ u1jðxij � x�j þ x�jÞ þ u0j þ eij

¼ c00 þ ðc10 þ c01Þx�j þ u0j þ u1jx�j

þc10ðxij � x�jÞ þ u1jðxij � x�jÞ þ eij

(4)

Here, the within-cluster fixed effect is given as c10,
whereas the between-cluster fixed effect is c10 þ c01:
Hence, this re-expression shows that this model

unconflates the fixed component of the slope of xij
(since c10 6¼ c10 þ c01). Unfortunately, however, Eq.
(4) shows that this model still conflates the random
component, as u1j simultaneously represents the ran-
dom component of the slope of xij � x�j as well as x�j:
Hence, researchers fitting this conventional contextual
effect model with random slopes for the purposes of
disaggregation are paradoxically allowing the fixed
components of the slopes of xij � x�j and x�j to be dif-
ferent but forcing their random components to be
equivalent.

The fact that the conventional random-slope con-
textual effect MLM and the uncentered MLM yield a
conflated random component has largely gone
unappreciated. It was first briefly noted in an
exchange in the Multilevel Modeling Newsletter
(Raudenbush, 1989; see also Longford, 1989; Plewis,
1989). But in the intervening 30 years it has rarely
been mentioned in the methodological literature
(Enders & Tofighi, 2007; Hoffman, 2015; Wu &
Wooldridge, 2005), and has been virtually ignored in
the applied literature—in contrast to the considerable
attention and concern that has been paid to conflation
of the fixed component in both the methodological
and applied literatures. Random conflation may have
gone unappreciated because there has been neither
elaboration nor demonstration of the specific issues
and implications associated with it until now.4

As background for explaining why random confla-
tion is problematic, we must first review the distinc-
tion between a random component for a purely level-
1 predictor (which is already well understood) and
that for a purely level-2 predictor (which is not widely
understood, according to Goldstein, (2011) and
Snijders and Berkhof, (2008)). Having a random com-
ponent for the slope of a purely level-1 predictor xij �
x�j is well known to imply that the within-cluster
effect of xij � x�j depends on cluster membership, and
thus certain clusters have stronger effects than others.
This is often called slope heterogeneity. Such a situ-
ation is illustrated in Figure 1a. In contrast, having a
random component for the slope of a purely level-2
predictor may, at first glance, sound counterintuitive

3Note that we reserve the use of the word “conflation” for equality
constraints between parameters dealing with the within-cluster and the
between-cluster portion of xij; the substitution done in Eq. (2) is simply a
mathematically convenient way of demonstrating such implicit equality
constraints. Practically speaking, any model implicitly places innumerable
constraints, but only those specifically involving xij � x�j and x�j are
relevant to the current discussion.

4Prior authors have, however, recognized that, despite the likelihood
equivalency of the fixed-slope contextual effect model and fixed-slope
cluster-mean centered model (defined later), the random-slope contextual
effect model (Equation 3) is not likelihood equivalent to the random-
slope cluster-mean-centered model (equal to Equation 3 when replacing
xij with xij � x�j). Methodologists have noted this nonequivalence and
have suggested differing implications thereof (see, e.g., Kreft et al., 1995;
Enders & Tofighi, 2007; Raudenbush & Bryk, 2002; Snijders & Bosker,
2012). We discuss such explanations later, and explain how the results of
the current paper add to the understanding of the differences between
these two models.
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given that every cluster supplies only one score on the
level-2 predictor.5 However, it has been previously
shown to be estimable, though with an unfamiliar
interpretation—specifically, it has been shown to rep-
resent intercept heteroscedasticity across clusters (e.g.,
Goldstein, 2003, 2011 [Chapter 3, p. 85]; Rights &
Sterba, 2016; Snijders & Berkhof, 2008; Snijders &
Bosker, 1999, 2012 [Chapter 8, pp. 128–129]). To see
this, first note that the cluster-specific intercept for
the conventional random-slope contextual effect
model, b0j (as is defined in Appendix A, where it is
equal to the model-implied cluster mean of the out-
come; Raudenbush, 1989),6 implies a heteroscedastic
intercept variance. This heteroscedastic intercept

variance denoted s22j for cluster j can be expressed as
a quadratic function7 of x�j, as derived in detail in
Appendix A

s22j ¼ varðb0jjx�jÞ
¼ varðc00 þ ðc10 þ c01Þx�j þ u0j þ u1jx�jjx�jÞ
¼ varðu0j þ u1jx�jjx�jÞ
¼ s00 þ 2s10x�j þ s11x2�j

(5)

An example of such heteroscedastic intercept variance
is illustrated in Figure 1b, wherein the intercepts are
more variable at the extremes of x�j:

In the conventional random-slope contextual effect
model, the random component of the xij slope (i.e.,
u1j) thus simultaneously reflects a blend of both slope
heterogeneity and intercept heteroscedasticity. That is,
though random slope variance in the conventional
random-slope contextual effect model is varðu1jÞ ¼
s11, the latter term s11 also appears in Eq. (5).
Troublingly, in practice researchers interpret the vari-
ance s11 from this conventional random-slope con-
textual effect model as representing purely slope

Figure 1. Interpretation of a random component for a slope of a level-1 predictor vs. that of a level-2 predictor. Notes. In Panel A,
slope heterogeneity is reflected in the fact that the within-cluster effect of xij � x�j depends on cluster membership. In Panel B,
heteroscedastic intercept variance is reflected in the fact that cluster-specific intercepts are more variable at the extremes of x�j:
Cluster-specific intercepts (i.e., b0j s) were defined in Eq. (A2), and are equivalent to the model-implied cluster means of yij:

5Indeed, it is commonly taught in introductory MLM courses that one can
never include random slopes of level-2 predictors in a two-level model—
the intuition being that if each cluster supplies exactly one observation of
x�j , it does not make sense to estimate a “cluster-specific” effect of x�j:
However, an inherent aspect to multilevel modeling is that estimation
procedures pool across all observations/ clusters when estimating
parameters (Gelman & Hill, 2007; Raudenbush & Bryk, 2002), which, in
turn, allows estimation of variances and covariances associated with
random components of level-2 predictor slopes, as demonstrated later via
simulation and via empirical examples.
6Though here, and in Appendix A, the cluster-specific intercept b0j is
defined as conditional on the cluster mean of the level-1 predictor
(following Raudenbush, 1989), and is thus equivalent to model-implied
cluster mean of the outcome for cluster j, the intercept alternatively
could be defined unconditionally as c00 þ u0j: The former definition is
useful for explicating issues associated with random conflation; however,
these issues arise regardless of which intercept definition is used.

7In theory the intercept variance could follow some other function (e.g.,
linear, cubic, etc.) of x�j and/or could vary as a function of some other
level-2 variable. Because our goal is to explicate the issues associated
with random conflation, here we restrict focus to the intercept variance
structure specifically implied by the conventional random-slope contextual
effect model.
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heterogeneity (i.e., cluster-specific differences in
slopes), thus failing to recognize or note that it is con-
flated with intercept heteroscedasticity.

An alternative (but complimentary) way to concep-
tualize the random conflation implied by the conven-
tional random slope contextual effect model is that it
assumes the variance in yij across the range of xij fol-
lows the same exact quadratic form as the variance in
y�j across the range of x�j: See Appendix A for details.

To more precisely and mathematically clarify the
highly restrictive assumptions made by the conven-
tional random-slope contextual effect model, in Eq.
(6) we introduce a general model expression with sep-
arate notation for the two random components associ-
ated with the xij slope, denoted uwj and ubj: Here uwj
is the random component associated with the purely
within-cluster portion of the xij slope (i.e., slope of
xij � x�j) whereas ubj is the random component associ-
ated with the purely between-cluster portion of the xij
slope (i.e., slope of x�j). Eq. (6) also introduces separ-
ate notation for within-cluster and between-cluster
fixed components (cw, cb).

yij ¼ c00 þ cbx�j þ cwðxij � x�jÞ þ ubjx�j þ uwjðxij � x�jÞ þ u0j þ eij

eij�Nð0, r2Þ

u0j
uwj
ubj

2
4

3
5 � MVN

0
0
0

2
4

3
5, varðu0jÞ

covðu0j, uwjÞ varðuwjÞ
covðu0j, ubjÞ covðuwj, ubjÞ varðubjÞ

2
4

3
5

0
@

1
A
(6)

Note that these model terms would be directly esti-
mated in cluster-mean-centered (also known as group-
mean-centered) models discussed later (in which ðxij �
x�jÞ is entered as a predictor), but can also be inferred
from models with xij as the predictor (as done, e.g., in
Eqs. (2) and (4)). In particular, this representation in
Eq. (6) allows us to clarify that the conventional ran-
dom-slope contextual effect model in Eq. (3) makes
the highly restrictive assumption that ubj ¼ uwj, yield-
ing random conflation. Appendix B proves that this
assumption can be represented in terms of constraints
on model parameters as:

a. equal variances of uwj and ubj
(i.e., varðubjÞ ¼ varðuwjÞ)

b. perfect correlation of uwj and
ubj (corrðubj, uwjÞ ¼ 1).

(with a third constraint implied by the others that
corrðu0j, uwjÞ ¼ corrðu0j, ubjÞ). Appendix B proves that
adding these constraints to the Eq. (6) model yields
the conventional random-slope contextual effect
model of Eq. (3). When these strict assumptions of

equal variance and perfect correlation do not hold, as
is likely in practice, the estimated slope variance in
the conventional random-slope contextual effect
model will be an uninterpretable blend of its ‘within-
cluster’ component (slope heterogeneity) and its
‘between-cluster’ component (intercept heteroscedas-
ticity), and the conflated random components (u1j’s)
will lie between the uwj’s and ubj’s.

Erroneous inferences resulting from fitting
conventional random slope contextual effect
models

When fitting the conventional random slope context-
ual effect model, two of the erroneous inferences that
are likely to occur as a result of random conflation
are: #1) concluding there is no slope heterogeneity
when it indeed exists and #2) concluding there is
slope heterogeneity when it does not exist. Erroneous
inference #1 is likely to arise, for instance, in the com-
monly theorized situation in which there is indeed
slope heterogeneity in the population, but there is no
intercept heteroscedasticity in the population. This
situation is illustrated in Figure 2, wherein data were
generated such that varðuwjÞ > 0—evident by the het-
erogeneity in the slope of xij � x�j depicted in Figure
2a—and varðubjÞ ¼ 0—evident by the constant (homo-
scedastic) intercept variance (varðb0jjxijÞ) across the
range of x�j depicted in Figure 2b. In this situation,
researchers fitting the conventional random slope con-
textual effect model will too often erroneously con-
clude there is a lack of evidence for slope
heterogeneity, as demonstrated in Figure 2c where the
estimate of varðu1jÞ is near-zero and non-significant,
though slope heterogeneity does truly exist. Erroneous
Inference #1 is likely to arise in this situation because
the conflated residuals (u1j’s) are weighted toward 0 in
relation to the uwj’s (since the conflated residuals lie
between the uwj’s, which vary about 0, and the ubj’s,
which here are all 0). As an applied example of such a
situation, consider predicting language test scores
from verbal IQ for students nested within school.
Across-school slope heterogeneity in the effect of ver-
bal IQ has been theorized (certain schools provide
better resources for students to utilize their natural
language abilities than other schools) but intercept
heteroscedasticity by school-average verbal IQ has not
been theorized (e.g., Snijders & Bosker, 2012).

In contrast, Erroneous inference #2 is likely to
arise, for instance, when there is no slope heterogen-
eity in the population, but there is intercept heterosce-
dasticity in the population. This situation is illustrated
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in Figure 3, wherein data were generated such that
varðuwjÞ ¼ 0—evidenced by the parallel lines in Figure
3a—and varðubjÞ > 0—evidenced by the nonconstan-
t/heteroscedastic variance across the range of x�j
depicted in Figure 3b. In this situation, a researcher
fitting the random slope contextual effect model will
too often erroneously conclude there is slope hetero-
geneity, as demonstrated in Figure 3c wherein the
estimate of varðu1jÞ is significant when there is actu-
ally no slope heterogeneity. Erroneous Inference #2 is
likely to arise in this situation because the conflated
residuals (u1j’s) are weighted away from 0 in relation
to the uwj (the conflated residuals lie between the
uwj’s, which vary about zero, and the ubj’s, which here
are all 0). As an applied example of such a situation,
consider the prediction of depressive symptoms from
therapeutic alliance for patients nested within clini-
cians. Although no significant slope heterogeneity in
the effect of within-clinician deviations in therapeutic
alliance on patient depression has been detected (e.g.,
Baldwin et al., 2007), theory suggests that there could
be intercept heteroscedasticity by clinician-mean-alli-
ance. That is, there could be a large amount of across-
clinician variability in depression at the extremes of

clinician-mean alliance. Extremely high clinician-mean
alliance may facilitate depression treatment most for
therapists with person-centered orientations (who are
following highly individualized treatment plans), and
least for behaviorally oriented therapists (who are fol-
lowing pre-established manualized treatment plans).
Conversely, low clinician-mean alliance may interfere
with treating depression least for behaviorally orien-
tated therapists, but may interfere with treatment
most for person-centered therapists. In contrast, mod-
erate levels of clinician-mean alliance may be equally
consistent with therapist effectiveness for all orienta-
tions and so be associated with less across-clinician
variability in patient depression.

In the situations considered thus far, there was
either only slope heterogeneity (i.e., only variability in
uwj, not ubj, leading to Erroneous Inference #1) or
only intercept heteroscedasticity (i.e., only variability
in ubj, not uwj, leading to Erroneous Inference #2).
Later, in a full-scale simulation, we show how the
more general situation wherein both slope heterogen-
eity and intercept heteroscedasticity occur together
(i.e., there is variability in both uwj and ubj) can also
lead to erroneous conclusions about the degree of

Figure 2. Illustrating Erroneous Inference #1 from the conventional random-slope contextual effect model: Concluding there is no
slope heterogeneity when it exists. Note. Generating parameters: c00 ¼ 1, cw ¼ 3, cb ¼ 1:5, varðu0jÞ ¼ 2, varðuwjÞ ¼ 2, varðubjÞ ¼
0, and r2 ¼ 15 (all other residual (co)variances were 0). Data were generated from Eq. (6) using 50 clusters of size 10. The level-1
xij was generated as the sum of a within-cluster and between-cluster component, each with variance 1. The significance test for
s11 was a mixture chi-square test using a 50:50 mixture of v2df¼1 and v2df¼2 as the null reference distribution (Stram & Lee, 1994,
1995). Panel A depicts the generated slope heterogeneity, apparent from the nonparallel cluster-specific regression lines of yij on
xij � x�j (obtained from the uwj’s). Panel B depicts the generated intercept homoscedasticity, apparent from the constant vertical
spread of cluster-specific intercepts on the y-axis (obtained from the ubj’s) across the range of x�j: Recall that the cluster-specific
intercepts (i.e., b0js) were defined in Eq. (A2), and are equivalent to the model-implied cluster means of yij: In Panel C we fit the
conventional random-slope contextual effect model with lmer in R using REML, and find evidence of non-significant slope hetero-
geneity; this is reflected in the cluster-specific regression lines of yij on xij that are nearly parallel.
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slope heterogeneity (either underestimation or over-
estimation) when using the conventional random-
slope contextual effect model. Such distortion in the
random effect structure will then be shown via simu-
lation to result in inaccurate standard errors for fixed
components of slopes.

General taxonomy of slope conflation in
multilevel models

Though discussed thus far in the context of the con-
ventional random-slope contextual effect model, the
terms fixed conflation and random conflation that we
introduced earlier can be used more generally to
describe and classify any random-slope MLM con-
taining level-1 variables. Here we do so to provide a
general taxonomy of slope conflation for MLMs.
Recall that anytime a MLM contains xij, the MLM
can be re-expressed by separating xij into its pure
level-specific parts, xij � x�j (often called the cluster-
mean-centered, or group-mean-centered predictor)
and x�j (the cluster mean, or group mean). By doing
this, one can always express fixed components of a
level-1 variable’s slope in the form cwðxij � x�jÞ þ cbx�j
and random components of a level-1 variable’s slope
in the form uwjðxij � x�jÞ þ ubjx�j: We provide the
taxonomy:

� The MLM is fully conflated if it constrains cb ¼ cw
and ubj ¼ uwj:

� The MLM is partially conflated if it constrains
cb ¼ cw (fixed conflation) or ubj ¼ uwj (random
conflation), but not both.

� The MLM is unconflated if neither of these con-
straints are made.

For instance, the conventional random-slope con-
textual effect model constrains ubj ¼ uwj but does not
constrain cb ¼ cw and is thus partially conflated.

Methods for unconflating random slopes

Here we describe different methods for unconflating
random slopes. Corresponding reduced-form and
level-specific equations for these unconflated random
slope model specifications are given in Appendix C,
and reduced-form equations are summarized in Table
1. In Appendix C we also explain why each of these
model specifications is fully unconflated. Appendix E
provides syntax for fitting each of these unconflated
models.

For models that contain xij as a predictor—i.e., the
random-slope contextual effect MLMs or

Figure 3. Illustrating Erroneous Inference #2 from the conventional random-slope contextual effect model: Concluding there is
slope heterogeneity when it does not exist. Note. The significance test for s11 uses the mixture chi-square test described the
Figure 2 notes. The generating model, population parameters, and sample size were described in the Figure 2 note with the
exception that now var(uwj)¼0, var(ubj¼8), and r2¼10. Whereas Figure 2 demonstrated the case wherein conflated residuals are
weighted toward 0 relative to the uwj’s, the opposite can also occur wherein conflated residuals are weighted away from 0. This is
demonstrated in Figure 3, in which there is no generated slope heterogeneity (all uwj’s’ are 0; Panel A) but there is generated
intercept heteroscedasticity (var(ubj)>0; Panel B). Hence in the fitted conventional random slope contextual effect model, the con-
flated residuals (u1j’s) lie between 0 and the ubj’s, leading to non-parallel cluster-specific regression lines and the conclusion of sig-
nificant slope heterogeneity (Panel C).
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uncentered/grand-mean-centered MLMs—random
conflation can be avoided by including a random
component for the slope of x�j: We demonstrate this
in Appendix C. Therein we add the random compo-
nent u2j to Eq. (3) and show that, in this unconflated
model (which we term the random-slope contextual
effect model with random contextual effect in Table 1,
Row 3), ubj ¼ u1j þ u2j and uwj ¼ u1j (hence ubj is no
longer constrained equal to uwj). Empirical applica-
tions almost never fit this model for two reasons.
First, including a random component for the slope of
x�j in this model (a random contextual effect) had not
previously been motivated specifically as a methodo-
logical tool for unconflating. Second, including a ran-
dom component for the slope of x�j simply for the
purpose of allowing for intercept heteroscedasticity
has also been uncommon because intercept heterosce-
dasticity is not often considered by substantive theo-
ries (Goldstein, 2003, 2011; Rights & Sterba, 2016;
Snijders & Berkhof, 2008; Snijders & Bosker, 1999,
2012).

For cluster-mean-centered models that contain a
random slope of xij � x�j (rather than xij), random
conflation is inherently avoided because there is no
implicit equality constraint of uwj ¼ ubj; hence, uncon-
flation is assured regardless of whether a fixed compo-
nent for the slope of x�j, or random component for
the slope of x�j, or neither, is included. As such, if
one wants to fit a cluster-mean-centered model for
unconflation and is interested in only within-cluster
effects, one could exclude x�j entirely (noting that x�j
is orthogonal to xij � x�j) by fitting the random-slope
cluster-mean-centered model, given in Appendix C, Eq.
(C17) and in Table 1, Row 4. The cluster-mean-cen-
tered model remains unconflated if one has substan-
tive interest in also including a fixed between effect
for x�j (termed the random-slope cluster-mean-centered
model with fixed between effect in Appendix C, Eq.
(C15) and in Table 1, Row 5). Likewise, the cluster-
mean-centered model remains unconflated if one
wanted to also include a random between effect for x�j
to account for the possibility of intercept heterosce-
dasticity (termed the random-slope cluster-mean-cen-
tered model with random between effect in Appendix
C, Eq. (C13) and in Table 1, Row 6).

As a final option we consider here, suppose a
researcher strongly desired a contextual effect inter-
pretation for the fixed portion of the model, and also
wished to avoid random conflation, but did not wish
to model a random component for the slope of x�j at
level-2. To accomplish this, one could use a novel
hybrid specification that combines elements of a

contextual effect specification (for the fixed portion of
the model) with elements of a cluster-mean-centered
specification (for the random portion of the model).
We call this hybrid specification a random-slope
hybrid contextual effect and cluster-mean-centered
MLM (see Appendix C, Eq. (C19) and Table 1, Row
7). It includes xij and x�j as predictors for the fixed
portion of the model (as in a contextual effect specifi-
cation), but includes a random component for the
slope of xij � x�j in the random portion of the model
to purely reflect slope heterogeneity (as in a cluster-
mean-centered specification). Though it is unconven-
tional to utilize a different centering option for the
fixed portion of the model vs. the random portion (to
our knowledge, no other sources have suggested doing
so), this model still affords a sensible—and uncon-
flated—interpretation of parameters. In particular, as
shown in Appendix D, in this hybrid specification
from the last row in Table 1, c10 represents the
within-cluster fixed effect (cw), whereas c01 represents
the contextual fixed effect (cb � cw), and the random
slope term u1j purely reflects slope heterogeneity (uwj).
As derived in Appendix D and illustrated in the
upcoming empirical example section, this hybrid spe-
cification is likelihood equivalent to the random-slope
cluster-mean-centered MLM with fixed between effect
in Table 1, Row 4, whether xij (in the fixed portion of
the model) is uncentered or centered by any constant
value.

In total, Table 1 contains a suite of possible ran-
dom-slope MLM specifications. For each specification,
Column 3 of Table 1 clarifies whether fixed and/or
random components are conflated. Table 1 also char-
acterizes MLM specifications by whether they have
been commonly used in practice (Column 4) and pre-
viously recommended by methodologists (Column 5).
Column 4 of Table 1 highlights the noteworthy and
concerning fact that the commonly used MLMs
include those that are random conflated. Table 1,
Column 5, indicates that methodologists have even
specifically recommended that the conventional ran-
dom-slope contextual effect model (Table 1, Row 2)
be used to disaggregate level-specific effects, instead of
using cluster-mean-centering. Snijders and Bosker
(2012), for instance, stated “Generally, one should be
reluctant to use cluster-mean-centered random slopes
models unless there is a clear theory (or an empirical
clue) that not the absolute score xij but rather the
relative score ðxij � x�jÞ is related to yij:”

8 Others have

8This statement was made in comparing the random-slope cluster-mean-
centered model with fixed between effect and the conventional random-
slope contextual effect model. Breaking this statement down and focusing
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claimed that the contextual effect model is less com-
plicated and more interpretable than the cluster-
mean-centered model (see our Discussion for more
details)—however, importantly they failed to note its
inherent random conflation (e.g., Antonakis et al.,
2019; Hox, 2010; Kreft et al., 1995). Column 6 of
Table 1 highlights that here we recommend only the
unconflated MLM specifications as methods for
unconflating, and these specifications include those
not yet recognized or used for this purpose in practice
(i.e., Table 1, Rows 3 and 7). Column 7 of Table 1
indicates which of the specifications in Table 1 are
likelihood equivalent (as explained in the next section
and as derived in Appendix D). In Appendix E we
provide R, SPSS, and SAS syntax to fit each model in
Table 1.

Reconciling previous and current
understanding of relationships between
contextual effect and cluster-mean-centered
MLMs

Previous literature has considered relationships
between certain of the model specifications listed in
Table 1, in particular, the difference between context-
ual effect models and cluster-mean-centered models.
Numerous sources have established, for instance, that
the conventional random-slope contextual effect
MLM (Table 1, Row 2) is not equivalent to the ran-
dom-slope cluster-mean-centered MLM with a fixed
between effect for x�j (Table 1, Row 5) because of
their nonequivalent random effect structures. It had
been thought that cluster-mean-centered MLMs and
contextual effect MLMs were equivalent only when
they included fixed slopes, not when they included
random slopes (e.g., Kreft et al., 1995; Enders &
Tofighi, 2007; Brincks et al., 2017; Curran et al.,
2012). However, here we extend this literature by
showing that, in fact, a specification of the random-
slope cluster-mean-centered MLM and the random-
slope contextual effect MLM are indeed analytically
equivalent (i.e., analytic reparameterizations of each

other, as summarized in Table 1, Column 7).
Specifically, we prove mathematically in Appendix D
that the following two unconflated models are statis-
tically equivalent—the random-slope cluster-mean-
centered MLM with random between effect (Table 1,
Row 6) and the random-slope contextual effect MLM
with random contextual effect (Table 1, Row 3). To
illustrate, later in an empirical application, we dem-
onstrate how to reparameterize estimates and stand-
ard errors from the former model to yield those of
the latter model (and vice versa).

Though most prior sources had simply noted the
nonequivalence of the conventional random slope
contextual effect MLM and random-slope cluster-
mean-centered MLMs with a fixed between effect,
Raudenbush and Bryk (2002, pp. 145–149) provided
a substantive explanation for their discrepancy. They
discussed how, when grand-mean-centering (rather
than cluster-mean-centering) xij, estimating the ran-
dom intercept components entails an extrapolation
for clusters that are high or low on xij, as the zero
point of xij is outside the range of available data.
They argued that, because of this extrapolation, the
random slope residuals are shrunk toward 0, and
hence the random slope variance in a model with
grand-mean-centered xij (including contextual effect
models) will be smaller than that of cluster-mean-
centered models, which they then demonstrated with
an empirical example. However, as we show later via
simulation, this explanation does not generally hold
when investigating behavior across repeated sam-
pling. If the generating model is, for instance, the
random-slope cluster-mean-centered model with
fixed between effect (Table 1, Row 5), then the ran-
dom slope variance of the conventional random slope
contextual effect MLM will indeed tend to be smaller
than that of the correct fitted model; however, if
instead the generating model were the conventional
random slope contextual effect MLM (Table 1, Row
2), the random slope variances from both models
will, on average, be the same value, despite the
extrapolation that occurs for the contextual effect
model. Furthermore, in certain cases in which there
is level-2 heteroscedasticity in the generating model,
the average estimated slope variance in the context-
ual effect model will actually be much greater than
that of the cluster-mean-centered model. Each of
these patterns can be explained by the fact the con-
flated residuals are, implicitly, a weighted average of
two possibly discrepant random components (uwj s
and ubj s).

on the random portion of the model (as the fixed portion of both models
are analytically equivalent), if xij is more strongly related to yij than ðxij �
x�jÞ is related to yij , this implies that x�j is related to yij via a random
component, since the difference between xij and ðxij � x�jÞ is exactly x�j:
However, by using the conventional random-slope contextual effect
model, the random component of the slopes of both ðxij � x�jÞ and x�j are
implicitly assumed to be equivalent. Hence, the analytic result of the
current paper shows that this recommendation is logically inconsistent—
if, on the random side of the model, xij is more strongly related to yij
than ðxij � x�jÞ, then the underlying random components of ðxij � x�jÞ
and x�j cannot be the same (if they were the same, as the random
conflated model assumes, then xij and ðxij � x�jÞ would have the same
strength of relation with yij).
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Comparing the performance of the
conventional random-slope contextual effect
MLM to the unconflated MLMs

Earlier, we explained why the conventional random-
slope contextual effect model should be especially sus-
ceptible to the following issues: concluding there is no
slope heterogeneity when it exists (Type II error);
concluding there is slope heterogeneity when it does
not exist (Type I error); under- or overestimating the
degree of slope heterogeneity; and under- or overesti-
mating standard errors (SE) of fixed effects. Here we
show via simulation that the unconflated models pro-
vide markedly better performance in all of these
domains, as these unconflated models avoid the bias
induced by random conflation.

Unconflated models provide better power and
type I error rates for testing across-cluster slope
heterogeneity

To investigate power and Type I error rates across
repeated samples, we extend our single-sample illus-
trations in Figures 2 and 3 by generating 5000 sam-
ples using population parameters listed in the Figure
2 notes (for investigating power for detecting slope
heterogeneity when varðuwjÞ > 0 and varðubjÞ ¼ 0)
and listed in Figure 3 notes (for investigating Type I
error for detecting slope heterogeneity when
varðuwjÞ ¼ 0 and varðubjÞ > 0).9 Then we fit each of
the models in Table 1 rows 2-7 using lmer in R.10

Restricted maximum likelihood (REML) estimation
was used to obtain point estimates and SEs because
maximum likelihood (ML) estimation provides biased
estimation of random effect variances. ML was used
separately in computing mixture LRTs of random
slope variances, as the derived null distribution for

this test (a 50:50 mixture of v2df¼q�1 and v2df¼q�2 where
q ¼ # of random effects) assumes ML (Stram & Lee,
1994, 1995). Others recommend using REML for this
test (West et al., 2014), though results using REML vs.
ML are very similar (e.g., Morrell, 1998).

Power for detecting true slope heterogeneity was
computed as the proportion of samples wherein the
random slope variance of the level-1 predictor (xij for
the contextual effect models and xij � x�j for the clus-
ter-mean-centered models) was significant. As is clear
from Table 2, Column 1, the widely used conventional
random-slope contextual effect model yields much
lower power (.69) than all the unconflated models
(.87–.92). This is because the lack of intercept hetero-
scedasticity in the population (see Figure 2) causes the
conflated random slope residuals to be weighted
toward 0 in relation to the uwj’s, unlike in the uncon-
flated models.

Type I error for detecting slope heterogeneity when
it does not exist was computed as the proportion of
samples wherein the random slope variance of the
level-1 predictor was significant. As evident in Table
2, Column 2, the widely used conventional random-
slope contextual effect model yields a large Type I
error rate (nearly three times the nominal rate of .05).
This is because the presence of intercept heteroscedas-
ticity in the population (see Figure 3) means that the
conflated residuals are weighted away from 0 in rela-
tion to the uwj’s. All the unconflated models avoid
this issue and yield a rate close to the nominal level.

Unconflated models provide less bias in
estimating the degree of across-cluster slope
heterogeneity

In the above simulation, there was either slope hetero-
geneity or intercept heteroscedasticity, not both. Here
we show how erroneous conclusions about the degree
of slope heterogeneity in the conventional random-
slope contextual effect model also arise under more
general conditions wherein both slope heterogeneity
and intercept heteroscedasticity occur together (i.e.,

Table 2. Testing the random slope variance of a level-1 predictor using the conventional random-slope contextual effect model
vs. the unconflated random-slope models: Power and Type I error.

Power Type I error rate

Random-conflated Conventional random-slope contextual effect model .69 .13

Unconflated Random-slope contextual effect model w/ random contextual effect a .87 .03
Random-slope cluster-mean-centered model .92 .04
Random-slope cluster-mean-centered model w/ fixed between effect b .91 .04
Random-slope cluster-mean-centered model w/ random between effect a .87 .03
Random-slope hybrid contextual effect & cluster-mean-centered MLM b .91 .04

Notes. The pair of models with an “a” superscript are likelihood equivalent, as derived in Appendix D. The pair of models with a “b” superscript are likeli-
hood equivalent, as also derived in Appendix D.

9The set of population effect sizes (in the form of variance explained/ R-
squared) for this and all subsequent conditions are provided in Online
Appendix A (Rights & Sterba, 2019; Rights & Sterba, 2021).
10When any model failed to converge, that sample was excluded. Across
all simulations and all conditions, at least 96% of samples were retained.
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where there is variability in both the uwj and ubj that
contribute to the conflated residual u1j). Specifically,
we consider three conditions: when var(uwj)¼var(ubj),
when var(uwj)>var(ubj), and when var(uwj)<var(ubj).
For each condition, we vary the correlation of uwj and
ubj across its possible range. We include the first con-
dition (var(uwj)¼var(ubj)) simply to provide a proof-
of-concept demonstration that there is no risk of bias
only when the assumptions of the conventional ran-
dom-slope contextual effect model are exactly met.
We include the second condition because in empirical
practice there can be a larger amount of slope

heterogeneity relative to the amount of intercept het-
eroscedasticity (see e.g., Rights & Sterba, 2016). We
include the third condition because in empirical prac-
tice there also can be a smaller amount of slope het-
erogeneity relative to the amount of intercept
heteroscedasticity (our upcoming Empirical Example
illustrates this).

In the first condition varðuwjÞ ¼ varðubjÞ ¼ 2; in the
second condition we changed varðubjÞ ¼ 1 and in the
third condition we changed varðubjÞ ¼ 8: We generated
5000 repeated samples per condition. Other generating
parameters and sample size were the same as previously

Figure 4. Percent relative bias in random slope variance estimates and fixed effect standard errors for the conventional random-slope
contextual effect model versus the unconflated random-slope models. Notes. The random-slope cluster-mean-centered MLM does not
appear in Panel C as it is inapplicable (it does not contain any level-2 predictor). The random-slope hybrid contextual effect and cluster-
mean-centered MLM does not appear in this figure because its results would be equivalent to those of the random-slope cluster-mean-
centered MLM w/fixed between effect. The three horizontal (grey) reference lines denote 10, 0, and -10 percent relative bias.
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described in the Figure 2 notes. In each condition we fit
models in Table 1 rows 2-6 using lmer in R. Figure 4
shows the % relative bias in estimating the slope vari-
ance (100� ðcvarðu1jÞ � varðuwjÞÞ=varðuwjÞÞ) at each
corrðuwj, ubjÞ of �1, �.95, �.9 �.75, �.5, �.25, 0, .25,
.5, .75, .9, .95, or 1. The three horizontal lines in each
panel denote where % relative bias is 10%, 0%, and
�10%; values outside of this range conventionally indi-
cate meaningfully substantial bias.

Results for Condition 1 indicated that, as a proof-
of-concept demonstration supporting our derivations,
there is no bias in the estimation of slope heterogen-
eity when the two strict assumptions of the conven-
tional random-slope contextual effect model are met.
This is evident in Figure 4a, Column 1 (i.e., where
varðuwjÞ ¼ varðubjÞ) in that the thin (red) line reaches
0 only when corrðubj, uwjÞ ¼ 1: The further
corrðubj, uwjÞ is from 1, the more downward bias. This
is because when the correlation is not 1, conflated
residuals are, on average, weighted toward 0. For
instance, at corrðubj, uwjÞ ¼ �1, a uwj of 1 would cor-
respond with a ubj of �1, and hence the conflated
residual would be between �1 and 1. In contrast,
Figure 4a, Column 1 shows that all unconflated mod-
els avoid this issue and yield negligible bias in esti-
mating the degree of slope heterogeneity.

In Condition 2 (where var(uwj)>var(ubj)), the con-
ventional random-slope contextual effect model
always underestimates true slope heterogeneity (see
Figure 4a, Column 2). This occurs even when
corrðubj, uwjÞ ¼ 1 because, for any nonzero value of
uwj, the corresponding ubj for cluster j has the same
sign but smaller magnitude, hence weighting the con-
flated residual closer to 0 than uwj: In contrast, all
unconflated models again avoid this issue yielding
negligible bias in Condition 2.

In Condition 3 (where var(uwj)<var(ubj)) the con-
ventional random-slope contextual effect model can
either underestimate or overestimate true slope hetero-
geneity (see Figure 4a, Column 3). We emphasize this
possibility of overestimation, as previous authors have
stated that the slope variance of xij will be smaller
than that of xij � x�j (e.g., Enders & Tofighi, 2007;
Raudenbush & Bryk, 2002), though this is not always
the case. As for why overestimation is also possible,
consider the extreme of corrðubj, uwjÞ ¼ 1; for any
nonzero value of uwj, the corresponding ubj for cluster
j will be of the same sign but larger magnitude, and
thus the conflated residual will be weighted farther
from 0 relative to uwj: All unconflated models again
avoid this bias in Condition 3.

Unconflated models provide more accurate
standard errors for fixed components of slopes

Thus far we have primarily considered the impact of
random conflation on the testing and estimation of
the random slope variance itself. Researchers who are
interested moreso in fixed effect estimates need to
realize, however, that random conflation can adversely
affect the fixed portion of the model as well, in that it
can yield inappropriate SEs for fixed components of
slopes. It is well known in the MLM literature that
misspecification of the random effect structure can
yield inaccurate SEs for fixed effects (e.g., Raudenbush
& Bryk, 2002; Snijders & Bosker, 2012). Typically,
such misspecification is discussed in terms of incor-
rectly omitting a random effect, which, in turn, can
lead to estimated fixed effect SEs that do not properly
account for across-sample variability in slope hetero-
geneity, and are thus inaccurate (e.g., leading to ele-
vated Type I error for fixed effects; Barr et al., 2013).
To our knowledge, however, no one has demonstrated
the adverse impact of random conflation specifically
on fixed effect SEs. Due to the lack of general closed-
form expressions to obtain SEs in random slope
MLMs, here we investigate this adverse impact via
simulation. Specifically, under the three conditions
described in the previous section, we computed %
relative bias for fixed effect SEs (i.e., 100� ðdSEŷ �
SDĉÞ=SDĉÞ where dSEŷ is the across-sample average of
the analytic SE and SDĉ is the standard deviation of
the fixed effect estimate across repeated samples.

Regarding % relative bias for the level-1 fixed effect
SE (Figure 4b), the pattern of results mirrors exactly
the pattern found for the random slope variance esti-
mates in Figure 4a. That is, for the conventional ran-
dom-slope contextual effect model, when the random
slope variance is underestimated, SEs for ĉ10 are too
small, and when the random slope variance is overes-
timated, SEs for ĉ10 are too large. In contrast, all
unconflated models provide accurate level-1 fixed
effect SEs regardless of the degree of intercept hetero-
scedasticity or the correlation of uwj and ubj.

Lastly, regarding SEs for fixed effects of level-2 pre-
dictors (Figure 4c), the conventional random-slope
contextual effect model almost always underestimates
these SEs. In contrast, the random-slope contextual
effect model with random contextual effect and the
cluster-mean-centered model with random between
effect provide accurate SEs across conditions (a slight
exception being at the extreme boundary of the cor-
relation space). However, it is worth noting that, so
long as var(ubj) > 0, the cluster-mean-centered model
with only a fixed between effect for x�j (Appendix C,
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Eq. (C4) or Table 1, Row 5) can underestimate the SE
for the fixed effect of x�j (see dashed line in Figure 4c)
to an extent proportional to the degree of heterosce-
dasticity. Hence, unlike the unconflated models in
Table 1 Rows 3 or 6, the latter model in Table 1, Row
5 requires intercept homoscedasticity for accurate
inference about fixed effects of level-2 predictors.

Impact of sample size and ICC

The simulation depicted graphically in Figure 4
focused primarily on the impact of the variance of,
and the correlation between, the random components
uwj and ubj: Researchers may also wonder, however,
how other factors (e.g., sample size) may impact
results, particularly regarding the difference between
the unconflated and random conflated models. To
assess this, we reran the simulation while changing
one of the following: number of clusters (100 vs. 25,
as opposed to the original 50), cluster sizes (25 vs. 5,
as opposed to the original 10), or average11 ICC (s00
¼ 4 and r2 ¼ 7 vs. s00 ¼ 1 and r2 ¼ 14, as opposed
to the original s00 ¼ 2 and r2 ¼ 10). Results are pro-
vided in Online Appendix B, which provides six dif-
ferent versions of the results depicted in Figure 4,
each showing results for one of the aforementioned
generating conditions. Note that, across all conditions
(even the smaller sample sizes), convergence rates
remained above 95%.

In terms of level-2 sample size, note that either
increasing or decreasing the number of clusters had
virtually no impact on the results. This is sensible the-
oretically, given that changing the number of clusters
while holding the cluster size constant retains the rela-
tive amount of within-cluster vs. between-cluster
information (i.e., the ratio of the number of level-1
units to the number of level-2 units is unchanged).
Hence, the extent to which the conflated random
slope residuals are weighted toward uwj vs. ubj is not
changed from the original simulation.

In terms of the level-1 sample size, in contrast,
changing the cluster size did have a meaningful
impact on the results. When the cluster size increased
to 25 (up from the original 10), the random slope and
fixed effect standard error bias induced by random
conflation was still present and followed the general
pattern of Figure 4, often falling outside the bound of
plus-or-minus 10% relative bias; however, the degree

of bias was less pronounced. This is consistent with
the fact that increasing the number of level-1 units
relative to level-2 units in turn increases the relative
precision within-cluster vs. between-cluster; hence the
conflated residuals are weighted more toward uwj:
Conversely, when the cluster size decreased to 5
(down from the original 25), the random slope bias
induced by random conflation was much worse than
in Figure 4—here, there is decreased precision within-
cluster vs. between-cluster, and hence the conflated
residuals are weighted more toward ubj: The fixed
effect standard error bias for the original conditions
and the smaller cluster sizes remained fairly similar.

In terms of average ICC, the pattern of results mir-
ror those of cluster size. When the average ICC
increased, the same general bias pattern held for the
random slope variance and the fixed effect SEs for the
random-conflated model as was observed in Figure 4,
but the bias was less pronounced because the greater
relative amount of residual variance between- vs.
within-cluster leads to more within-cluster precision
(and hence conflated residuals weighted more toward
uwj). Conversely, when the average ICC decreased, the
bias in the random slope for the random conflated
model is much worse, as here there is less within-clus-
ter precision and hence the conflated residuals are
weighted more toward ubj:

Empirical examples

To concretely illustrate the differences in results
obtained from fully, partially, and unconflated MLMs,
here we predict math scores using a data set from
Kreft and de Leeuw (1998) widely used multilevel
modeling textbook. The data set consists of 519 stu-
dents (level-1) nested with 23 schools (level-2), yield-
ing an average cluster size of approximately 23. We
first, for didactic purposes, fit models that match
exactly those listed in Table 1 (i.e., same number of
predictors and random effects as in Table 1). Then, to
provide demonstrations more similar to empirical
research practice, we expand and include additional
predictors and random effects.

We first fit the popular (but fully conflated) uncen-
tered random slope MLM (i.e., Eq. (1), Table 1, Row
1, with xij being parents’ level of education) using
lmer in R with REML estimation. The estimated fixed
component of the slope was positive and significant
(2.90; p < .05), suggesting that students with more
educated parents tend to have higher math scores.
However, this fixed effect estimate is conflated (fixed
conflation) in that it implicitly reflects both a within-

11Note that the ICC (i.e., proportion of outcome variance that is between-
cluster) is not constant across all conditions in the original simulation.
This is because the ubj component contributes to between-cluster
outcome variance, and thus the ICC is larger when varðubjÞ is larger.
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cluster fixed effect—the fixed component of a stu-
dent’s parental education relative to their school-
mates—and a between-cluster fixed effect—the fixed
component of the school’s overall level of parental
education. As for the random component of the slope,
the slope variance was small and non-significant (1.29;
LRT using a 50:50 mixture of v2df¼1 and v2df¼2 null dis-
tribution yielded p > .05). This might lead one to
think that there is little across-cluster variability in the
association of parent education and math scores.
However, this estimate is also conflated (random con-
flation) in that it implicitly reflects both across-cluster
slope heterogeneity in the association of parent educa-
tion with math scores as well as intercept heterosce-
dasticity by school-mean parent education.

We next fit the conventional random-slope context-
ual effect model by adding a fixed slope of school-
mean parent education (i.e., Eq. (3); Table 1, Row 2).
Though this popular model unconflates the fixed
component, it still yields a conflated random compo-
nent. In this case, the conflated slope variance is
roughly the same as in the previous model, still small
and non-significant (1.51; LRT using a 50:50 mixture
of v2df¼1 and v2df¼2 null distribution yielded p > .05).
Researchers fitting this model in practice might erro-
neously believe that level-specific effects were effect-
ively disaggregated, based on current literature that
only emphasizes the fixed component.

Lastly, to fully unconflate, we fit the random slope
contextual effect model with random contextual effect
(Appendix C, Eq. (C9) or Table 1, Row 3) and the ran-
dom-slope cluster-mean-centered model with random
between effect (Appendix C, Eq. (C13) or Table 1, Row
6). We present results of both in Table 3 to highlight
their equivalencies (the table note explains how param-
eter estimates and SEs from one model can be
expressed in terms of those of the other model; corre-
sponding analytic derivations for these equivalencies
are in Appendix D). By unconflating the fixed compo-
nent, we see that both the within fixed effect (2.85)
and between fixed effect (5.90) are positive and signifi-
cant, but that there is a contextual effect
(5.90� 2.85¼ 3.05) in that the between effect is larger.
In other words, overall school-average parent education
is more predictive of math scores (in terms of slope
magnitude) than is an individual student’s parent edu-
cation. By unconflating the random component, results
now indicate significant slope heterogeneity (2.31; an
LRT using a 50:50 mix of v2df¼2, v

2
df¼3 null distribution

yielding p < .05 for either model in Table 3) and sig-
nificant intercept heteroscedasticity (with the school-
specific intercept variance for school j given as 15:38þ

23:90x�j þ 10:07x2�j; an LRT using a 50:50 mix of v2df¼2,
v2df¼3 null distribution yielding p < .05 for either
model in Table 3). In other words, (a) certain schools
had a stronger association between average parent edu-
cation and math score than other schools, and (b)
schools with either low or high average parent educa-
tion had more variability in math scores.

Importantly, results obtained by unconflating the
random component are in sharp contrast to what was
found in the (widely used) conventional random-slope
contextual effect model, wherein the slope variance
was small and nonsignificant. When fitting either the
widely used uncentered random slope MLM or the
conventional random-slope contextual effect model,
the conflated residuals are weighted heavily toward 0
in comparison to the uwj’s. Thus, as in our simulation
demonstration, conflating the random component can
combine together and inextricably mix up two sub-
stantively distinct phenomena (slope heterogeneity
and intercept heteroscedasticity), which here gave
researchers the problematic impression that there was
no slope heterogeneity in the association of parent
education with math scores.

It is important to realize that random conflation can
cause similar distortion in more complex models with
more predictors, and can compromise model results
and interpretation in additional ways. Suppose, for
instance, one was interested in assessing why the slope
of parent’s level of education may differ across schools,
and thus sought to examine cross-level interactions
(i.e., interactions between level-1 and level-2 predictors)
to account for the slope heterogeneity. When adding
cross-level interactions, researchers will often assess the
change in the random slope variance of the level-1 pre-
dictor going from a model without the interaction to a
model with the interaction (Hoffman, 2015; Rights &
Sterba, 2020). As an illustration, we will consider
school-level SES (i.e., average socioeconomic status
among students from the same school) as a possible
moderator of the slope of parent education (full results
are provided in Table 4). It could be the case, for
instance, that parent’s level of education is less impact-
ful in schools that are higher in SES and thus likely
have more resources available to students. To examine
this, we first added a fixed slope of school-level SES to
both the aforementioned conventional random-slope
contextual effect model and the unconflated random-
slope contextual effect model; it was non-significant in
both models (point estimates of 11.15 and 9.01,
respectively; p > .05 for both).

More pertinent to this research question, however,
the slope variance of parent education is relatively small
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and non-significant in the random conflated model
(1.66, p > .05), whereas it is larger and significant in
the unconflated model (2.35, p < .05). Similar to the
earlier demonstration, the estimate of the heteroscedastic
component (for school-mean parent education) is com-
paratively large and significant (9.57, p < .05), and thus
the random conflated model’s slope variance may be
distorted and misleadingly low. As such, in considering
school-level SES as a possible explanation of across-
school heterogeneity in the effect of parent’s education,
the conflated model could lead researchers to errone-
ously think there is no significant such slope variance to
begin with. For the unconflated model, adding a fixed
slope for the cross-level interaction of school-level
SES� parent education reveals a significant fixed effect
for the cross-level interaction (�2.18; p < .05).12 This
suggests that the effect of parent education is indeed

smaller for schools with higher SES—and inclusion of
this cross-level interaction in the unconflated model
leads to an interpretable decrease in the random slope
variance (2.35 to 0.52).13

Discussion

This paper began by highlighting the common prac-
tice in which researchers use and recommend the con-
ventional random-slope contextual effect model
expecting it will disaggregate level-specific effects (e.g.,
Antonakis et al., 2019; Hox, 2010; Kreft et al.,1995;
Snijders & Bosker, 2012). We then showed how this
model (and the also-common uncentered random
slope model) actually fail to disaggregate the random
component of the slope of xij (i.e., these models con-
flate slope heterogeneity and intercept

Table 3. Empirical example results for illustrative unconflated random-slope models: Assessing the relationship between parent
education and math scores.

Random-slope contextual
effect MLM w/ random

contextual effect (Appx. Eq. (C9))

Random-slope cluster-mean-
centered MLM w/ random

between effect
(Appx. Eq. (C13))

Fixed effects

intercept (ĉ00) 52.38 (1.08) 52.38 (1.08)

parent education (within effect, ĉ10) 2.85 (0.49) —

school-mean-centered parent education (within effect, ĉ10) — 2.85 (0.49)

contextual effect of parent education (ĉ01) 3.05 (1.27) —

between effect of parent education (ĉ01) — 5.90 (1.24)

Random effects

var. of u0j (ŝ00) 15.38 15.38

var. of parent education slope (ŝ11) 2.31 —

var. of school-mean-centered parent education slope (ŝ11) — 2.31

var. of contextual effect of parent education (ŝ22) 8.46 —

var. of between effect of parent education (ŝ22) — 10.07

cov. of u0j & parent education slope residual (ŝ10) 0.71 —

cov. of u0j & school-mean-centered parent education slope residual (ŝ10) — 0.71

cov. of u0j & contextual effect of parent education slope residual (ŝ20) 11.18 —

cov. of u0j & between effect of parent education slope residual (ŝ20) — 11.88

cov. of parent education slope residual with contextual effect of parent education slope
residual (ŝ21)

�0.35 —

cov. of school-mean-centered parent education slope residual with between effect of
parent education slope residual (ŝ21)

— 1.96

level-1 residual variance (r̂2) 70.95 70.95

Note. As derived in Appendix D, ĉ01, ŝ20, ŝ21, ŝ22, and the standard error of ĉ01 (seĉ01 ) from the random-slope cluster-mean-centered model w/random

between effect are equal to ðĉ10 þ ĉ01Þ, ðŝ10 þ ŝ20Þ, ðŝ11 þ ŝ21Þ, ðŝ11 þ ŝ22 þ 2ŝ21Þ, and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
se2ĉ10 þ se2ĉ01 þ 2covðĉ10, ĉ01Þ

q
(with

covðĉ10, ĉ01Þ ¼ �0:16), respectively, from the random-slope contextual effect model with random contextual effect. All fixed effects were significant
(t-test with alpha ¼ .05). All random effect variances were significant using mixture likelihood ratio tests described in the Empirical Example section.

12In order to disaggregate the fixed component of this cross-level
interaction, we additionally included a fixed slope of school-mean
SES� school-mean parent education in both the unconflated and
random-conflated models. This level-2 interaction itself is not central to
the research question (i.e., why the slope of parent’s education differs
across school), and was non-significant in both models (see Table 4).

13If, for the conflated model, one were to ignore the non-significance of
the slope variability in the reduced model and nonetheless assess the
change in the slope variance after adding the cross-level interaction, one
would see the slope variance go to nearly 0 (from 1.66 to <0.01).
Importantly, however, this decrease is driven not only by the impact of
the product term, but also the extent to which there is random
conflation, compromising the utility and interpretability of the result.
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heteroscedasticity and are hence termed random con-
flated). After providing a taxonomy differentiating
fixed conflation vs random conflation, we demon-
strated negative interpretational and inferential conse-
quences of random conflation. Next, we identified a
suite of unconflated models to avoid these problems,
explaining why they are unconflated (in Appendix C),
providing software code for implementing them (in
Appendix E), and showing via simulation that, com-
pared to the commonly used random-conflated mod-
els, these unconflated models show improved Type I
error, power, accuracy of estimates of slope heterogen-
eity, and accuracy of SEs for fixed effects. Below we
provide recommendations for practice, including com-
ments on which unconflated models to use for par-
ticular goals as well as remedies if non-convergence is
encountered. We then supply future directions.

Recommendations for practice: choosing among
unconflated MLMs

In light of our analytic and simulation results, we do
not recommend that the (popular) conflated models
(Table 1, Rows 1–2) be used in practice. Hence, the
key decision-making process centers on which of the
unconflated specifications (Table 1 Rows 3–7, with
associated software syntax to implement them in
Appendix E) to use—key factors to consider are
model parsimony, model estimability, and model
interpretability.

The first key factor is model parsimony, as some
unconflated specifications (Table 1 Rows 3 and 6
involving a random component for the slope of x�j)
have the additional bonus of being able to account for
the presence of intercept heteroscedasticity, but are
consequently more complex specifications in terms of
the number of estimated parameters. In contrast,
other unconflated specifications (Table 1, Rows 4, 5,
and 7) are more restrictive in assuming intercept
homoscedasticity, but are thus more parsimonious
specifications in terms of the number of estimated
parameters.

A second key factor to consider is model estimabil-
ity. Unconflated specifications that involve a random
component for the slope of x�j (in Table 1, Rows 3
and 6) pose a greater chance of nonconverged or
improper solutions compared to the simpler uncon-
flated specifications (in Table 1 Rows 4, 5, and 7),
especially with larger numbers of random effects,
fewer clusters, and less between-cluster variability in
the cluster means of predictors and/or less between-
cluster variability in the outcome (e.g., KorendijkTa
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et al., 2008). If researchers encounter convergence
problems with unconflated specifications in Table 1
involving a random component for the slope of x�j
(Table 1, Rows 3 and 6), researchers can instead opt
for unconflated specifications that do not require a
random component for the slope of x�j (Table 1, Rows
4, 5, and 7). In such cases, researchers could of course
still also consider accounting for any substantively
theorized intercept heteroscedasticity via other
approaches, such as those reviewed in Hedeker et al.
(2012).

The third key factor to consider is model interpret-
ability. If one wants the ability to not only unconflate
the random slope, but also account for the potential
presence of intercept heteroscedasticity, deciding
between the unconflated specifications in Table 1,
Rows 3 and 6 is primarily a matter of interpretational
preference, as the two are reparameterizations of each
other (see Appendix D). One may prefer to interpret
the fixed component of the slope of x�j as the context-
ual effect (in the former model), or interpret it as the
fixed between effect of x�j (in the latter model).
Likewise one may prefer to interpret the random
component of the slope of x�j (i.e., the cluster specific
residual u2j) as the cluster-specific difference in uwj
and ubj, akin to a cluster-specific contextual effect
residual (in the former model), or interpret it as the
heteroscedastic intercept component ubj (in the latter
model). Some have argued that contextual effect mod-
els in general allow more straightforward interpret-
ation and easier testing for the existence of a
contextual effect than cluster-mean-centered models
(e.g., Algina & Swaminathan, 2011; Hox, 2010; Kelley
et al., 2017; Kreft et al., 1995; Snijders & Bosker,
2012). Nonetheless, the presence of a contextual effect
can also easily be detected by testing the equality of
the fixed within- and between-cluster effects (e.g.,
Wang & Maxwell, 2015). Another widely cited sugges-
tion (from Enders & Tofighi, 2007) is that grand-
mean-centered level-1 predictors be used (without
also adding the cluster mean) when the goal is to
assess the effect of a level-2 predictor while control-
ling for a level-1 variable; however, Rights et al.
(2020) recently critiqued this practice, showing it can
yield severe bias in estimating fixed slopes of level-2
predictors.

On the other hand, if the researcher is willing to
assume intercept homoscedasticity and is interested in
effects only at level-1, the random-slope cluster-mean-
centered model (Table 1, Row 4) can be fit to uncon-
flate random slopes. However, if the researcher is will-
ing to assume intercept homoscedasticity and is

interested in fixed effects of both level-1 and level-2
predictors, deciding between the unconflated specifica-
tions in Table 1 rows 5 and 7 is again primarily a
matter of interpretational preference—i.e., whether or
not one wants a contextual effect interpretation of the
fixed effects (Table 1, Row 7) or not (Table 1, Row
5)—as the two specifications are reparameterizations
of each other (see Appendix D). Note that if this
assumption of intercept homoscedasticity were vio-
lated, SEs for the fixed slope of x�j would be inappro-
priate (as shown earlier in Figure 4c).

Future directions

First, although the assumptions of the conventional
random-slope contextual effect model (i.e., varðuwjÞ ¼
varðubjÞ and corrðuwj, ubjÞ ¼ 1) are highly restrictive,
in practice, it is possible that sample estimates of the
random effect covariances could happen to be consist-
ent with these constraints. If desired, one could test if
the deviations from these constraints (i.e., unequal
variance and imperfect correlation) are statistically
significant. For instance, one could compare conven-
tional vs. unconflated random-slope contextual effect
models using an adjusted LRT or information criteria.
In future work, the power to detect unequal variances
and imperfect correlations of uwj and ubj could be
investigated. However, in our opinion, the most
straightforward approach to avoid random conflation
is not to undertake potentially fallible testing of these
restrictive assumptions, but rather to simply avoid
making them by instead fitting one of the unconflated
MLMs.

Second, though we provided results for a variety of
possible patterns and correlations of uwj, ubj in Figure
4, future research can capitalize on growing data shar-
ing and open data policies in order to undertake re-
analyses of empirical applications from diverse sub-
stantive fields that previously fit random-conflated
contextual effect models. This will aid in determining
which patterns of results (e.g., those resulting from
Conditions 1, 2, or 3 from Figure 4) are most com-
mon empirically when unconflating the random slope.
Such information about varðuwjÞ, varðubjÞ and
corrðuwj, ubjÞ cannot be gleaned from output of exist-
ing empirical applications that report only the con-
flated varðu1jÞ:

The topic of the present paper has been on pre-
senting various methods for unconflating, not on pre-
senting various methods for modeling intercept
heteroscedasticity. If the latter topic was of primary
interest, there are, of course, alternative methods for
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modeling intercept heteroscedasticity other than inclu-
sion of a random component for the slope of x:�j (e.g.,
Hedeker et al., 2012). Importantly, however, such
alternatives are not directly relevant to the notion of
random conflation discussed in the current paper, as
unconflating the random component for contextual
effect models requires explicitly including a random
component for the slope of x:�j: Nonetheless, future
research can instead focus on comparing alternative
methods of accounting for heteroscedasticity, not only
at level-2, but also level-1 (the latter of which was not
relevant for the current paper; e.g., Snijders &
Berkhof, 2008). Relatedly, such research could investi-
gate possible causes for such heteroscedasticity. For
instance, the quadratic pattern of intercept heterosce-
dasticity discussed here may directly reflect changes in
random intercept variance along the cluster mean of
xij, however, it is also possible that this pattern arises
due to an omitted interaction between x:�j and some
additional level-2 predictor.

Last, although here we focused on the impact of
random conflation on point estimation, significance
testing, and SEs, future work can further explicate its
impact on measures of effect size for MLMs, such as
R2 (see Rights & Sterba, [2019] for an integrative
framework of MLM R2). Since conflation can distort
either the fixed or random components of level-1 pre-
dictor slopes, the estimated proportion of variance
attributable to level-1 predictors can similarly be dis-
torted (Rights, 2022). We caution researchers to be
wary of interpreting R2s from conflated models
(Rights, 2022).

Conclusion

Although decades of methodological literature has
focused on the importance of unconflating level-spe-
cific fixed effects, it has continued ignoring the possi-
bility of conflating random effects. We hope this work
helps researchers understand the distinction between
random effects associated with level-1 vs. level-2 varia-
bles, makes clear the adverse impact of conflating the
two, and encourages the use of fully unconflated
MLMs in practice.
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Appendix A: Derivation of the heteroscedastic
intercept variance in Equation 5 that is
implied by the conventional random-slope
contextual effect model

Here we show that the heteroscedastic intercept variance for
the conventional random-slope contextual effect model is
given by the quadratic function of x�j in manuscript
Equation 5. First we show how the conventional random-
slope contextual effect model equation given in Equation 3
can be expressed in terms of cluster-specific intercepts and
slopes:

yij ¼ b0j þ b1jðxij−x�jÞ þ eij (A1)

Here b0j is the cluster-specific intercept, and b1j the cluster-
specific slope of ðxij−x�jÞ. Defining these as

b0j ¼ c00 þ ðc10 þ c01Þx�j þ u0j þ u1jx�j

b1j ¼ c10 þ u1j
(A2)

yields manuscript Equation 3. Note also that this cluster-
specific intercept, b0j, is equal to the model-implied out-
come mean for cluster j, as shown in Equation A3:

Eijj yij½ � ¼ Eijj b0j þ b1jðxij−x�jÞ þ eij
� �

¼ Eijj b0j
� �þ Eijj b1j

� �
Eijj ðxij−x�jÞ

� �þ Eijj eij½ �
¼ Eijj b0j

� �
¼ c00 þ ðc10 þ c01Þx�j þ u0j þ u1jx�j

(A3)

Next, noting that, in general, a model’s random intercept
variance can be expressed as the variance of b0j conditional
on predictors (Goldstein, 2011; Rights & Sterba, 2016;
Snijders & Bosker, 2012), we compute the random intercept
variance of the conventional random-slope contextual effect
model as:

varðb0jjx�jÞ ¼ varðc00 þ ðc10 þ c01Þx�j þ u0j þ u1jx�jjx�jÞ
¼ varðu0j þ u1jx�jjx�jÞ
¼ varðu0jÞ þ 2covðu1jx�j, u0jjx�jÞ þ varðu1jx�jjx�jÞ
¼ varðu0jÞ þ 2covðu1j, u0jÞx�j þ varðu1jÞx2�j
¼ s00 þ 2s10x�j þ s11x

2
�j

(A4)

This is equal to s22j given in Equation 5.
An alternative (but complimentary) way to conceptualize

the random conflation implied by the conventional random
slope contextual effect model is that it assumes the variance
in yij across the range of xij follows the same exact same
(heteroscedastic) quadratic form as the variance in y�j across
the range of x�j. In other words, it is well known that, in
general, including a random slope in an MLM implies a
type of heteroscedasticity in yij itself, as shown here for the
conventional random slope contextual effect model:

varðyijjxijÞ ¼ varðc00 þ c01x�j þ u0j þ c10xij þ u1jxij þ eijÞ
¼ varðu0j þ u1jxij þ eijÞ
¼ s00 þ 2s01xij þ s11x

2
ij þ r2

(A5)

In fact, this expression is nearly identical to the variance
of y�j across the range of x�j—i.e., varðy�jjx�jÞ—which is
shown in Equation A4, given that y�j is equal to b0j, as
delineated in Equation A3. Hence the random slope vari-
ance of this random conflated model is simultaneously
defining the degree of heteroscedasticity in yij and in y�j.

Appendix B: The conventional random-slope
contextual effect model (Equation 3) is nested
within the (unconflated) random-slope
contextual effect model with random
contextual effect (Appendix C Equation C1)

Here we show that the (random-conflated) conventional
random-slope contextual effect model is nested within the
(unconflated) random-slope contextual effect model with
random contextual effect via two constraints on Equation 6:
varðuwjÞ ¼ varðubjÞ and corrðuwj, ubjÞ ¼ 1 (which technically
implies a third constraint that corrðu0j, uwjÞ ¼ corrðu0j, ubjÞ).
We do this by showing that these two models are equivalent
when imposing these constraints.

We first show that varðuwjÞ ¼ varðubjÞ and
corrðuwj, ubjÞ ¼ 1 together implies uwj ¼ ubj.
Note first that, by definition:

E uwj−ubj½ � ¼ E uwj½ �−E ubj½ �
¼ 0−0

¼ 0

(B1)

Next, if the two constraints hold:

varðubj−uwjÞ ¼ varðubjÞ þ varðuwjÞ−2covðubj, uwjÞ
¼ varðubjÞ þ varðuwjÞ−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðubjÞvarðuwjÞ

q
corrðubj, uwjÞ

¼ varðubjÞ þ varðuwjÞ−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðubjÞvarðuwjÞ

q
¼

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðubjÞ

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðuwjÞ

q 
2

¼
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðubjÞ
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðubjÞ

q 
2

¼ 0

(B2)

Together, Equations B1 and B2 imply that uwj−ubj ¼ 0
for all j, which implies that uwj ¼ ubj for all j. We can thus
set the uwj and ubj terms in the unconflated model in
Equation 6 generically to u1j, which yields the following
model:

yij ¼ c00 þ cwðxij−x�jÞ þ cbx�j þ u1jðxij−x�jÞ þ u1jx�j þ u0j þ eij

eij�Nð0, r2Þ
u0j
u1j

� �
� MVN

0
0

� �
,

s00 s10
s10 s11

� �� �
(B3)

This is equivalent to the (random-conflated) conventional
random-slope contextual effect model, as shown in the par-
ameterization given in manuscript Equation 4. With manu-
script Equation 4, we can simply set c10 ¼ cw and
c01 ¼ cb−cw, and the expression is the same as Equation B3.
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Appendix C: Reduced form and level-specific
expressions for all models in Table 1

Here we provide full expressions for each of the models
outlined in Table 1, showing both the reduced form and
level-specific expressions. For both, we write the model in
standard format (in which the level-1 predictor is left in its
raw form) as well an equivalent but re-expressed format in
which the level-1 predictor is decomposed into a purely
level-1 and purely level-2 portion. The latter format is use-
ful in clarifying why each model is either fully conflated,
partially conflated, or unconflated (for further details on the
latter categories, see the manuscript section titled General
taxonomy of slope conflation in multilevel models).

The uncentered random-slope MLM (Table 1, row 1) was
defined in manuscript Equation 1 as:

yij ¼ c00 þ c10xij þ u1jxij þ u0j þ eij

eij�Nð0,r2Þ (C1)

u0j
u1j

� �
� MVN

0
0

� �
,

s00
s10 s11

� �� �
This model can, equivalently, be written in level-specific
format as follows:

Level−1 : yij ¼ b0j þ b1jxij þ eij

Level−2 : b0j ¼ c00 þ u0j

b1j ¼ c10 þ u1j
(C2)

where b0j and b1j represent the cluster-specific intercept
and slope, respectively. The conflation in this model is
more apparent, however, when substituting xij with the
equivalent ðxij−x�jÞ þ x�j and re-writing, yielding a reduced-
form expression of:

yij ¼ c00 þ c10ððxij−x�jÞ þ x�jÞ þ u1jððxij−x�jÞ þ x�jÞ þ u0j þ eij
¼ c00 þ c10ðxij−x�jÞ þ c10x�j þ u1jðxij−x�jÞ þ u1jx�j þ u0j þ eij

(C3)

and a level-specific expression—with the purely level-1 por-
tion of xij in the level-1 model and the purely level-2 por-
tion of xij in the level-2 model—as follows:

Level−1 : yij ¼ b0j þ b1jðxij−x�jÞ þ eij

Level−2 : b0j ¼ c00 þ c10x�j þ u1jx�j þ u0j

b1j ¼ c10 þ u1j
(C4)

This model has fixed conflation because, using the sub-
scripting convention introduced in the more general model
expression in manuscript Equation 6, both cw and cb are
equal to c10. The model similarly has random conflation
because both uwj and ubj are equal to u1j.

The conventional random-slope contextual effect MLM
(Table 1, row 2) was defined in manuscript Equation 3 as:

yij ¼ c00 þ c10xij þ c01x�j þ u1jxij þ u0j þ eij

eij�Nð0,r2Þ (C5)

u0j
u1j

� �
� MVN

0
0

� �
,

s00
s10 s11

� �� �

And can be written in level-specific format as:
Level−1 : yij ¼ b0j þ b1jxij þ eij

Level−2 : b0j ¼ c00 þ c01x�j þ u0j
b1j ¼ c10 þ u1j

(C6)

Substituting xij with ðxij−x�jÞ þ x�j and re-writing yields a
reduced-form expression of:
yij ¼ c00 þ c10ððxij−x�jÞ þ x�jÞ þ c01x�j þ u1jððxij−x�jÞ þ x�jÞ

þ u0j þ eij

¼ c00 þ c10ðxij−x�jÞ þ ðc10 þ c01Þx�j þ u0j þ u1jðxij−x�jÞ
þ u1jx�j þ eij

(C7)

and level-specific expressions of:

Level−1 : yij ¼ b0j þ b1jðxij−x�jÞ þ eij

Level−2 :b0j ¼ c00 þ ðc10 þ c01Þx�j þ u1jx�j þ u0j

b1j ¼ c10 þ u1j
(C8)

The fixed component is disaggregated because cw ¼ c10 and
cb ¼ ðc10 þ c01Þ (and hence cw is not constrained equal to
cb), but the random component is conflated
because uwj ¼ ubj ¼ u1j.

The random-slope contextual effect MLM with random
contextual effect (Table 1 Row 3) adds to the conventional
random-slope contextual effect MLM a random component
for the slope of x�j, u2j, and is given as:

yij ¼ c00 þ c10xij þ u1jxij þ c01x�j þ u2jx�j þ u0j þ eij

eij�Nð0, r2Þ
u0j
u1j
u2j

2
4

3
5 � MVN

0
0
0

2
4

3
5, s00

s10 s11
s20 s21 s22

2
4

3
5

0
@

1
A (C9)

This model can be written in level-specific format as:
Level−1 : yij ¼ b0j þ b1jxij þ eij

Level−2 :b0j ¼ c00 þ c01x�j þ u0j þ u2jx�j

b1j ¼ c10 þ u1j
(C10)

The disaggregation of both the fixed and random compo-
nents is apparent when substituting xij with ðxij−x�jÞ þ x�j,
yielding the following reduced-form expression:

yij ¼ c00 þ c10ðxij−x�j þ x�jÞ þ u1jðxij−x�j þ x�jÞ þ c01x�j
þ u2jx�j þ u0j þ eij

¼ c00 þ c10ðxij−x�jÞ þ u1jðxij−x�jÞ þ ðc10 þ c01Þx�j
þ ðu1j þ u2jÞx�j þ u0j þ eij

(C11)

and the following level-specific expressions:

Level−1 : yij ¼ b0j þ b1jðxij−x�jÞ þ eij

Level−2 : b0j ¼ c00 þ ðc10 þ c01Þx�j þ u0j þ ðu1j þ u2jÞx�j
b1j ¼ c10 þ u1j

(C12)
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The fixed component is disaggregated because cw ¼ c10 and
cb ¼ ðc10 þ c01Þ, and the random component is disaggre-
gated because uwj ¼ u1j and ubj ¼ ðu1j þ u2jÞ (and
hence uwj 6¼ ubj).

The random-slope cluster-mean-centered MLM with ran-
dom between effect (Table 1 Row 6) is analytically equivalent
to the random-slope contextual effect MLM with random
between effect (as shown in Appendix D), and the former is
given as:
yij ¼ c00 þ c10ðxij−x�jÞ þ u1jðxij−x�jÞ þ c01x�j þ u2jx�j þ u0j þ eij

eij�Nð0,r2Þ
u0j
u1j
u2j

2
4

3
5 � MVN

0
0
0

2
4

3
5, s00

s10 s11
s20 s21 s22

2
4

3
5

0
@

1
A (C13)

which can be written in level-specific format (noting that xij
is already decomposed into a purely level-1 and purely
level-2 portion) as:

Level−1 : yij ¼ b0j þ b1jðxij−x�jÞ þ eij

Level−2 :b0j ¼ c00 þ c01x�j þ u0j þ u2jx�j

b1j ¼ c10 þ u1j
(C14)

Here there is no conflation, as cw ¼ c10, cb ¼ c01, uwj ¼ u1j,
and ubj ¼ u2j.

The random-slope cluster-mean-centered MLM with fixed
between effect (Table 1 Row 5) is more parsimonious than
the random-slope cluster-mean-centered MLM with random
between effect in that it excludes the random component for
the slope of x�j, and is thus given as:

yij ¼ c00 þ c10ðxij−x�jÞ þ c01x�j þ u1jðxij−x�jÞ þ u0j þ eij

eij � Nð0, r2Þ
u0j
u1j

� �
� MVN

u0j
u1j

� �
,

s00
s10 s11

� �� �
(C15)

and can be written in level-specific format as:

Level−1 : yij ¼ b0j þ b1jðxij−x�jÞ þ eij

Level−2 :b0j ¼ c00 þ c01x�j þ u0j

b1j ¼ c10 þ u1j
(C16)

Here there is no conflation, as cw ¼ c10, cb ¼ c01, uwj ¼ u1j,
and ubj ¼ 0.

The random-slope cluster-mean-centered MLM (Table 1
Row 4) is more parsimonious than the random-slope clus-
ter-mean-centered MLM with fixed between effect in that it
excludes a fixed component for the slope of x�j, and is thus
given as:

yij ¼ c00 þ c10ðxij−x�jÞ þ u1jðxij−x�jÞ þ u0j þ eij

eij�Nð0,r2Þ
u0j
u1j

� �
� MVN

u0j
u1j

� �
,

s00
s10 s11

� �� �
(C17)

which can be written in level-specific format as:

Level−1 : yij ¼ b0j þ b1jðxij−x�jÞ þ eij

Level−2 :b0j ¼ c00 þ u0j

b1j ¼ c10 þ u1j
(C18)

Here there is no conflation, as cw ¼ c10, cb ¼ 0, uwj ¼ u1j,
and ubj ¼ 0.

Lastly, the hybrid random-slope contextual effect cluster-
mean-centered MLM (Table 1 Row 7) is analytically equiva-
lent to the random-slope cluster-mean-centered MLM with
fixed between effect (Table 1 Row 5). The former specifies
the fixed effects as in a conventional contextual effect
model, but rather than a random slope of xij, there is a ran-
dom slope of xij−x�j. It is thus given as:

yij ¼ c00 þ c10xij þ c01x�j þ u0j þ u1jðxij−x�jÞ þ eij (C19)

eij�Nð0, r2Þ
u0j
u1j

� �
� MVN

0
0

� �
,

s00
s10 s11

� �� �

Writing this model is traditional multilevel format yields an
atypical expression, given that both xij and ðxij−x�jÞ are
level-1 predictors, but their slopes don’t each have fixed and
random components:

Level−1 : yij ¼ b0j þ b1jxij þ b2jðxij−x�jÞ þ eij

Level−2 : b0j ¼ c00 þ c01x�j þ u0j
b1j ¼ c10
b2j ¼ u1j

(C20)

The disaggregation of both the fixed and random compo-
nents is apparent when substituting xij with ðxij−x�jÞ þ x�j,
yielding the following reduced-form expression:

yij ¼ c00 þ c10ðxij−x�j þ x�jÞ þ c01x�j þ u0j þ u1jðxij−x�jÞ þ eij
¼ c00 þ c10ðxij−x�jÞ þ ðc10 þ c01Þx�j þ u0j þ u1jðxij−x�jÞ þ eij

(C21)

and the following (less atypical) level-specific expressions:

Level−1 : yij ¼ b0j þ b1jðxij−x�jÞ þ eij

Level−2 :b0j ¼ c00 þ ðc10 þ c01Þx�j þ u0j

b1j ¼ c10 þ u1j
(C22)

Here there is no conflation, as cw ¼ c10, cb ¼ c10 þ c01,
uwj ¼ u1j, and ubj ¼ 0.

Appendix D: Deriving equivalencies between
unconflated MLMs: Analytic equivalency
between Table 1 Row 3 & 6 MLM and analytic
equivalency between Table 1 Row 5 & 7 MLMs

In this section we first show that the (unconflated) ran-
dom-slope contextual effect MLM with random between
effect (Table 1 Row 3) is equivalent to the (unconflated)
random-slope cluster-mean-centered MLM with random
between effect (Table 1 Row 6), such that the two are re-
parameterizations of each other. The random-slope context-
ual effect MLM with random contextual effect can be re-
expressed as
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yij ¼ c00 þ c10xij þ u1jxij þ c01x�j þ u2jx�j þ u0j þ eij

¼ c00 þ c10ðxij−x�j þ x�jÞ þ u1jðxij−x�j þ x�jÞ
þ c01x�j þ u2jx�j þ u0j þ eij

¼ c00 þ c10ðxij−x�jÞ þ c10x�j þ u1jðxij−x�jÞ þ u1jx�j
þ c01x�j þ u2jx�j þ u0j þ eij

¼ c00 þ c10ðxij−x�jÞ þ ðc10 þ c01Þx�j þ u1jðxij−x�jÞ
þ ðu1j þ u2jÞx�j þ u0j þ eij

(D1)

Letting c�01 and u�2j denote, respectively, the fixed and ran-
dom component of the slope of x�j from the random-slope
cluster-mean-centered MLM with random between effect, we
define these parameters in terms of random-slope contextual
effect MLM with random contextual effect parameters as
c�01 ¼ c10 þ c01 and u�2j ¼ u1j þ u2j to show the equivalence
of the reduced-form expressions in the first lines of
Appendix Equations C9 and C13 (all other terms between
the models on these lines are the same). This implies that
the standard error of ĉ�01 can be expressed as the square
root of a function of the asymptotic variances and covarian-
ces of the estimates from the random-slope contextual effect
MLM with random contextual effect, as such:

seĉ�01 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðĉ�01Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðĉ10 þ ĉ01Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðĉ10Þ þ varðĉ01Þ þ 2covðĉ10, ĉ01Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
se2ĉ10 þ se2ĉ01 þ 2covðĉ10, ĉ01Þ

q
(D2)

Further, we show the equivalence of the random effect
covariances by first letting s�20, s

�
21, and s�22 denote variance

and covariance components from the random-slope cluster-
mean-centered MLM with random between effect, and then
expressing the random effect covariance structure of this
model as
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with u0j, u1j, s00, s10, and s11 being the same for either
model. We next express this random effect covariance struc-
ture purely in terms of the random-slope contextual effect
MLM with random contextual effect parameters by consider-
ing that

s�20 ¼ covðu1j þ u2j, u0jÞ
¼ covðu1j, u0jÞ þ covðu2j, u0jÞ
¼ s10 þ s20

(D4)

and

s�21 ¼ covðu1j þ u2j, u1jÞ
¼ covðu1j, u1jÞ þ covðu2j, u1jÞ
¼ varðu1jÞ þ covðu2j, u1jÞ
¼ s11 þ s21

(D5)

and

s�22 ¼ varðu1j þ u2jÞ
¼ varðu1jÞ þ varðu2jÞ þ 2covðu1j, u2jÞ
¼ s11 þ s22 þ 2s21

(D6)

Thus,
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Hence, the parameters of the random-slope cluster-mean-
centered MLM with random between effect can be equiva-
lently expressed in terms of random-slope contextual effect
MLM with random contextual effect (Table 1 Row 5), such
that the two are re-parameterizations of each other.

We next show that the (unconflated) random-slope clus-
ter-mean-centered MLM with fixed between effect (Table 1
Row 5) is equivalent to the (unconflated) random-slope
hybrid contextual effect and cluster-mean-centered MLM
(Table 1 Row 7). The latter can be re-expressed as

yij ¼ c00 þ c10xij þ c01x�j þ u0j þ u1jðxij−x�jÞ þ eij
¼ c00 þ c10ðxij−x�j þ x�jÞ þ c01x�j þ u0j þ u1jðxij−x�jÞ þ eij
¼ c00 þ c10ðxij−x�jÞ þ ðc01 þ c10Þx�j þ u0j þ u1jðxij−x�jÞ þ eij

(D8)

Letting c�01 denote the fixed component of the slope of x�j
from the random-slope cluster-mean-centered MLM with
fixed between effect, we define this parameter in terms of
the random-slope hybrid contextual effect and cluster-mean-
centered MLM parameters as c�01 ¼ c10 þ c01 to show the
equivalence of the reduced-form expressions in the first
lines of Appendix Equations C15 and C19 (all other terms
between the models on these lines are the same). This
implies that the standard error of ĉ�01 can be expressed as
the square root of a function of the asymptotic variances
and covariances of the estimates from the random-slope con-
textual effect MLM with fixed contextual effect, as such:

seĉ�01 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðĉ�01Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðĉ10 þ ĉ01Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðĉ10Þ þ varðĉ01Þ þ 2covðĉ10, ĉ01Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
se2ĉ10 þ se2ĉ01 þ 2covðĉ10, ĉ01Þ

q
(D2)

Hence, the parameters of the random-slope cluster-mean-
centered MLM with fixed between effect (Table 1 Row 5),
can be equivalently expressed in terms of the random-slope
hybrid contextual effect and cluster-mean-centered MLM
(Table 1 Row 7), such that the two are re-parameterizations
of each other.

Note that the aforementioned equivalencies hold when-
ever any independent variable (for either model) is centered
by any constant value, e.g., the grand mean. In general, in
both MLM and single-level regression, centering by a

26 J. D. RIGHTS AND S. K. STERBA



constant will change the interpretation of the intercept and,
in models with higher-order terms (e.g., interactive models
or polynomial models of at least order 2), will change the
interpretation of the slopes of lower-order terms, but always
results in a likelihood equivalent model to the version that
is not centered by said constant.

Appendix E: R, SPSS, and SAS syntax for each
model listed in Table 1

Here we provide syntax with which researchers can fit each
model listed in Table 1 in either R (using the function lmer
from the package lme4), SPSS (using the MIXED com-
mand), or SAS (using the procedure PROC MIXED). The
below syntax assumes that the dataset (called “data” below)
contains the following variables:

yij¼ the outcome of interest
xij¼ the uncentered (or grand-mean-centered) level-1
predictor

xij_clusmean¼ the cluster mean (or group mean) of the
level-1 predictor

xij_gmc¼ the cluster-mean-centered (or group-mean-cen-
tered) level-1 predictor

clusterID¼ cluster-specific identification

Uncentered random-slope MLM (Table 1 Row 1):
lmer syntax:
fit_mod1 <- lmer(yij � 1 þ xij þ (1 þ xij j clusterID), data¼ data)
summary(fit_mod1)

SPSS MIXED syntax:
MIXED yij WITH xij
/FIXED¼ INTERCEPT xij
/METHOD¼ REML
/PRINT¼ SOLUTION TESTCOV
/RANDOM¼ INTERCEPT xij j SUBJECT(clusterID) COVTYPE(UN).
SAS PROC MIXED syntax:
proc mixed data¼ data covtest noclprint noitprint method¼ reml dfbw;
class clusterID;
model yij¼ xij / solution;
random intercept xij / subject¼ clusterID type¼ un;
run;

Conventional random-slope contextual effect MLM
(Table 1 Row 2):
lmer syntax:
fit_mod2 <- lmer(yij � 1 þ xijþ xij_clusmean þ (1 þ xij j clusterID),
data¼ data)
summary(fit_mod2)

SPSS MIXED syntax:
MIXED yij WITH xij xij_clusmean
/FIXED¼ INTERCEPT xij xij_clusmean
/METHOD¼ REML
/PRINT¼ SOLUTION TESTCOV
/RANDOM¼ INTERCEPT xij j SUBJECT(clusterID) COVTYPE(UN).
SAS PROC MIXED syntax:
proc mixed data¼ data covtest noclprint noitprint method¼ reml dfbw;
class clusterID;
model yij¼ xij xij_clusmean / solution;
random intercept xij / subject¼ clusterID type¼ un;
run;

Random-slope contextual effect MLM with random con-
textual effect (Table 1 Row 3):

lmer syntax:
fit_mod3 <- lmer(yij � 1 þ xijþ xij_clusmean þ (1 þ xijþ xij_clusmean
j clusterID), data¼ data)
summary(fit_mod3)

SPSS MIXED syntax:
MIXED yij WITH xij xij_clusmean
/FIXED¼ INTERCEPT xij xij_clusmean
/METHOD¼ REML
/PRINT¼ SOLUTION TESTCOV
/RANDOM¼ INTERCEPT xij xij_clusmean j SUBJECT(clusterID)
COVTYPE(UN).

SAS PROC MIXED syntax:
proc mixed data¼ data covtest noclprint noitprint method¼ reml dfbw;
class clusterID;
model yij¼ xij xij_clusmean / solution;
random intercept xij xij_clusmean / subject¼ clusterID type¼ un;
run;

Random-slope cluster-mean-centered MLM (Table 1
Row 4):
lmer syntax:
fit_mod4 <- lmer(yij � 1 þ xij_gmc þ (1 þ xij_gmc j clusterID),
data¼ data)
summary(fit_mod4)

SPSS MIXED syntax:
MIXED yij WITH xij_gmc
/FIXED¼ INTERCEPT xij_gmc
/METHOD¼ REML
/PRINT¼ SOLUTION TESTCOV
/RANDOM¼ INTERCEPT xij_gmc j SUBJECT(clusterID) COVTYPE(UN).
SAS PROC MIXED syntax:
proc mixed data¼ data covtest noclprint noitprint method¼ reml dfbw;
class clusterID;
model yij¼ xij_gmc / solution;
random intercept xij_gmc / subject¼ clusterID type¼ un;
run;

Random-slope cluster-mean-centered MLM with fixed
between effect (Table 1 Row 5):
lmer syntax:
fit_mod5 <- lmer(yij � 1 þ xij_gmcþ xij_clusmean þ (1 þ xij_gmc j
clusterID), data¼ data)
summary(fit_mod5)

SPSS MIXED syntax:
MIXED yij WITH xij_gmc xij_clusmean
/FIXED¼ INTERCEPT xij_gmc xij_clusmean
/METHOD¼ REML
/PRINT¼ SOLUTION TESTCOV
/RANDOM¼ INTERCEPT xij_gmc j SUBJECT(clusterID) COVTYPE(UN).
SAS PROC MIXED syntax:
proc mixed data¼ data covtest noclprint noitprint method¼ reml dfbw;
class clusterID;
model yij¼ xij_gmc xij_clusmean / solution;
random intercept xij_gmc / subject¼ clusterID type¼ un;
run;

Random-slope cluster-mean-centered MLM with random
between effect (Table 1 Row 6):
lmer syntax:
fit_mod6 <- lmer(yij � 1 þ xij_gmcþ xij_clusmean þ (1 þ xij_
gmcþ xij_clusmean j clusterID), data¼ data)
summary(fit_mod6)

SPSS MIXED syntax:
MIXED yij WITH xij_gmc xij_clusmean
/FIXED¼ INTERCEPT xij_gmc xij_clusmean
/METHOD¼ REML

(Continued)
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/PRINT¼ SOLUTION TESTCOV
/RANDOM¼ INTERCEPT xij_gmc xij_clusmean j SUBJECT(clusterID)
COVTYPE(UN).

SAS PROC MIXED syntax:
proc mixed data¼ data covtest noclprint noitprint method¼ reml dfbw;
class clusterID;
model yij¼ xij_gmc xij_clusmean / solution;
random intercept xij_gmc xij_clusmean / subject¼ clusterID type¼ un;
run;

Random-slope hybrid contextual effect & cluster-mean-
centered MLM (Table 1 Row 7):
lmer syntax:
fit_mod7 <- lmer(yij � 1 þ xijþ xij_clusmean þ (1 þ xij_gmc j
clusterID), data¼ data)
summary(fit_mod7)

(Continued)

SPSS MIXED syntax:
MIXED yij WITH xij xij_clusmean
/FIXED¼ INTERCEPT xij xij_clusmean
/METHOD¼ REML
/PRINT¼ SOLUTION TESTCOV
/RANDOM¼ INTERCEPT xij_gmc j SUBJECT(clusterID) COVTYPE(UN).
SAS PROC MIXED syntax:
proc mixed data¼ data covtest noclprint noitprint method¼ reml dfbw;
class clusterID;
model yij¼ xij xij_clusmean / solution;
random intercept xij_gmc / subject¼ clusterID type¼ un;
run;
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