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In the multilevel modelling literature, methodologists widely acknowledge that a level-1

variable can have distinct within-cluster and between-cluster effects, and that failing to

disaggregate these can yield a slope estimate that is an uninterpretable, conflated blend of

the two. Methodologists have stated, however, that including conflated slopes of level-1

variables in a model is not problematic if substantive interest lies only in effects of level-2

predictors. Researchers commonly follow this advice and use methods that do not

disaggregate effects of level-1 control variables (e.g., grand mean centering) when

examining effects of level-2 predictors. The primary purpose of this paper is to show that

this is a dangerous practice.When level-specific effects of level-1 variables differ, failing to

disaggregate them can severely bias estimation of level-2 predictor slopes. We show

mathematically why this is the case and highlight factors that can exacerbate such bias.We

corroborate these findings with simulations and present an empirical example, showing

how such distortions can severely alter substantive conclusions. We ultimately

recommend that simply including the cluster mean of the level-1 variable as a control

will alleviate the problem.

1. Introduction

Multilevel modelling (MLM) is a popular framework for analysing hierarchical data

structures, such as students nested within schools, employees nested within companies,

or repeated observations nested within persons. In such analyses, researchers are often

interested in the potential effects of both level-1 (observation-level) as well as level-2

(cluster-level) variables.

In the MLM literature, methodologists have long recognized that a level-1 variable can
have distinct within-cluster and between-cluster effects on an outcome of interest.

Cronbach (1976) first highlighted this phenomenon in the social sciences, pointing out

that the ‘overall’ relation between a level-1 variable and some outcome is, implicitly, an

‘uninterpretable blend’ of the within-cluster and between-cluster relations (Cronbach,

1976, p. 219). To ensure appropriate interpretation and inferences for slopes of level-1

predictors, methodologists widely recommend disaggregating these level-specific effects

(Algina& Swaminathan, 2011; Bell, Jones, & Fairbrother, 2018; Cronbach, 1976; Curran&
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Bauer, 2011; Curran, Lee, Howard, Lane, & MacCallum, 2012; Enders & Tofighi, 2007;

Hoffman & Stawski, 2009; Hofmann&Gavin, 1998; Raudenbush & Bryk, 2002; Snijders &

Bosker, 2012; Wang & Maxwell, 2015).

As an illustration of disparate level-specific effects, Enders and Tofighi (2007) analysed
data consisting of employees nested within organizations and examined the influence of

workload (the number of hoursworked perweek) on psychological well-being. Of note is

that, implicit in the level-1 variable of workload, there is a between-cluster component

(the aggregate level of working hours for each organization) as well as a within-cluster

component (an individual employee’s workload relative to their organization’s aggregate

level). Enders and Tofighi (2007) showed that models that disaggregate these two level-

specific components (e.g., by including both cluster-mean-centeredworkload and cluster-

mean workload as separate predictors) yielded significant and negative slopes associated
with both, suggesting that employees who work more relative to their organization’s

aggregate level have worse well-being, and that companies with higher overall levels of

working hours have employees with worse well-being. Importantly, the slope associated

with the latter was larger than that associated with the former. Models that failed to

disaggregate these two level-specific effects (e.g., those in which workload was grand-

mean-centered) yielded a slope estimate that was somewhere in between the two; such a

slope is said to be conflated (Preacher, Zyphur,&Zhang, 2010). Enders andTofighi (2007)

recommended that, for researchers interested in the influence of workload, both level-
specific effects should be included in the model.

Conversely, methodologists have also stated that including conflated slopes of level-1

variables in a model is not problematic if substantive interest lies in effects of only level-2

predictors. For instance, Enders and Tofighi (2007) recommended that level-1 predictors

be grand-mean-centered (a method that, by itself, does not disaggregate level-specific

effects) when they are used merely as control variables for level-2 predictors; other

methodologists echo these recommendations (e.g., Dalal & Zickar, 2012; Enders, 2013;

Hofmann &Gavin, 1998; McCoach, 2010; Peugh, 2010; Raudenbush & Bryk, 2002). They
further stated that this practice is appropriate evenwhen the slope of the level-1 predictor

is known to be an uninterpretable blend of disparate level-specific effects. With the

workload/well-being example, they added a level-2 predictor (organization size or SIZE)

to the model with a conflated slope of workload and stated that:

In this situation, the c01 regression coefficient quantifies the influence of SIZE, controlling for
individual workload. The c10 regression still gives a distorted view of the level-1 regression of

well-being on workload, but this is not a concern if the substantive focus is on the level-2

covariate and the c01 coefficient. (Enders & Tofighi, 2007, p. 130)

The implicit rationale is that, evenwhen the slope is conflated, the level-1 variable can

still serve as an appropriate control variable for a level-2 predictor. Researchers commonly

follow this advice and elect not to disaggregate the effects of level-1 control variables

when examining effects of level-2 predictors (e.g., Dettmers, Trautwein, L€udtke, Kunter,
& Baumert, 2010; Diefendorff, Erickson, Grandey, & Dahling, 2011; Lenkeit, 2013;

L€udtke, Robitzsch, Trautwein, & Kunter, 2009; Merritt, Wanless, Rimm-Kaufman,
Cameron, & Peugh, 2012; Salmivalli, Voeten, & Poskiparta, 2011; Trautwein, & L€udtke,
2009; Wilkowski, Robinson, & Troop-Gordon, 2010).

The purpose of the current paper is to newly demonstrate that, when level-specific

effects of level-1 variables differ, failing to disaggregate them can severely bias estimation

of level-2 predictor slopes. This contrasts with previous studies on conflation that have
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almost exclusively focused on issues in interpreting and making inferences about,

specifically, a conflated slope of a level-1 predictor. For instance, methodologists have

often discussed how such a slope is uninterpretable, or how such a slope might lead

researchers erroneously to infer that there is an effect of the level-1 variable across
individuals (when the apparent effect is actually driven by differences across groups), or,

conversely, how such a slope might lead researchers erroneously to infer that there is an

effect of the level-1 variable across groups (when the apparent effect is actually driven by

differences across persons). However, the distortion inherent in specifying such a slope is

not isolated to the level-1 variable itself. This distortion can, in turn, perturb the rest of the

model aswell. In using level-1 variables with conflated slopes as control variables for level-

2 predictors, the level-2 predictor slopes are conditioned on the level-1 variables whose

effects are misspecified and thus not controlled for correctly. Although methodologists
have previously provided otherwise excellent guidance related to disaggregating level-

specific effects in MLM (e.g., Enders & Tofighi, 2007), this particular point needs to be

clarified.

The remainder of this paper proceeds as follows. We first consider different

methods for assessing a level-2 predictor slope while conditioning on a level-1 variable.

In particular, we showmathematically why using conflated level-1 variables as controls

for level-2 predictors is inappropriate. We focus on the extent to which this practice

yields biased estimation of level-2 predictor slopes. We highlight factors that could
exacerbate such bias, and we show that this bias can be avoided altogether by fitting

models that disaggregate level-specific effects. We then demonstrate these analytics

with a simulation. Ultimately, we recommend that, to control for a level-1 variable

when assessing the effects of level-2 predictors, one should include only the cluster

mean of the level-1 variable as a control. We conclude with an empirical example

wherein we assess the influence of a level-2 predictor while controlling for a level-1

variable, showing that the results differ markedly when the model is fit with a

conflated level-1 predictor slope, as opposed to a model that appropriately disaggre-
gates level-specific effects.

Before continuing, we note several caveats. First, to maintain a manageable scope, we

restrict our focus to fairly simple models. In particular, we discuss models with only a

single level-1 variable, we assume perfectly reliable predictors (consistent with standard

MLM assumptions; Raudenbush & Bryk, 2002; Snijders & Bosker, 2012), and we present

random intercept models as opposed to random slope models (because researchers

typically model control variables with fixed slopes). We nonetheless discuss the

generalizability of our results to more complex models in Section 5 (showing, for
instance, that our recommendations hold for random slope models). Finally, we restrict

our focus to the impact of conflated level-1 predictor slopes on the estimation of level-2

predictor slopes, although we stress that having conflated level-1 predictor slopes can

similarly distort other portions of the model. For instance, recent work has shown the

adverse effects of conflation on estimating interactions involving level-1 predictors

(Loeys, Josephy, & Dewitte, 2018).

2. Methods to assess the effect of a level-2 variable while controlling for a

level-1 variable

First consider the scenario in which a level-2 predictor is of primary substantive interest,

but the researcher wishes to condition on a level-1 covariate. We compare four different
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modelling options in terms of their abilities to assess appropriately the slope of the level-2

variable of interest.

2.1. Fully-disaggregated-x model

A level-1 predictor xij, with observation i nested within cluster j, equals the sum of the

mean of cluster j, denoted x�j, and observation i’s deviation from x�j, denoted xij � x�j
(i.e., xij ¼ ðxij � x�jÞ þ x�j). The latter is commonly called a cluster-mean-centered, or

group-mean-centered, level-1 variable (Enders & Tofighi, 2007; Snijders & Bosker, 2012).

Assuming there is variability in both of these components, the level-1 variable can exert

both within- and between-cluster effects on the outcome. Therefore, we can include all

three of these slopes (that of the level-2 predictor of interest, zj, and those of the two level-
specific components of xij) in a random-intercept model as

yij ¼ c00 þ cxwðxij � x�jÞ þ cxbx�j þ czzj þ u0j þ u1jðxij � x�jÞ þ eij;

eij �Nð0;r2Þ; ð1Þ

u0j

u1j

� �
�MVN

0

0

� �
;

s00
s01 s11

� �� �
:

Here the continuous outcome yij is modelled as a function of the level-2 predictor of
interest, zj, as well as the two components of xij. The slope of interest is cz, the within

effect of xij is cxw , and the between effect of xij is cxb . The fixed portion of the intercept is

given as c00,with the randomportion (residual) given asu0j, which is normally distributed

with across-cluster variance s00. The level-1 residual, eij, is normally distributed with

variance r2.1

Because this model contains separate parameters for the two level-specific effects of

xij, as a shorthand,wewill call this the fully-disaggregated-xmodel.Of the fourmodelswe

discuss, this is the most general specification. The remaining models place simple
constraints on the parameters of thismodel. For illustrative purposes, borrowing from the

structural equation modelling framework, this model is presented as a path diagram in

Figure 1a. Note that the three single-headed arrows going from left to right denote the

slopes of the three predictors. The double-headed arrow indicates that the two predictors

x�j and zj can be correlated (although this is not an estimated MLM parameter and is thus

not labelled). The lack of any double-headed arrow connecting xij � x�j highlights the fact
that xij � x�j is a purely level-1 predictor with no across-cluster variance and therefore

zero correlation with any level-2 predictor (Raudenbush & Bryk, 2002; Snijders & Bosker,
2012). With this in mind, we can make use of covariance algebra to express the slope of

interest, cz, in the population as a function of othermodel components. First consider the

model-implied covariance of yij and zj:

1 Note that this model is equivalent to (albeit a slight reparameterization of) a contextual effect model (Enders &
Tofighi, 2007; Kreft, de Leeuw, & Aiken, 1995; Snijders & Bosker, 2012) that includes as predictors xij (or grand-
mean-centered xij), x�j, and zj . Without loss of generality, we focus on the widely recommend cluster-mean-
centered approach to disaggregation (Algina & Swaminathan, 2011; Enders & Tofighi, 2007; Hofmann & Gavin,
1998; Raudenbush & Bryk, 2002).
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covðyij; zjÞ ¼ covðc00 þ cxwðxij � x�jÞ þ cxbx�j þ czzj þ u0j þ u1jðxij � x�jÞ þ eij; zjÞ
¼ covðcxbx�j þ czzj; zjÞ
¼ covðcxbx�j; zjÞ þ covðczzj; zjÞ
¼ cxbcovðx�j; zjÞ þ czvarðzjÞ:

ð2Þ

We can thus express cz in the population as

cz ¼
covðyij; zjÞ � cxbcovðx�j; zjÞ

varðzjÞ : ð3Þ

Importantly, because we have included both level-specific effects for xij, when fitting

thismodelwe need notworry that estimation of cz is adversely affected by either failing to

Panel A: Fully-disaggregated-x model :BlenaP x-mean model

Panel C: No-x model Panel D: Conflated-x model* 

Figure 1. Methods of assessing the slope of a level-2 variable with a potential level-1 control

variable. Notes. The fully-disaggregated-x model and the no-x model appropriately condition the

effect of the level-2 variable, zj, on the level-1 variable, xij, via its cluster mean, x�j. The no-xmodel

and the conflated-xmodel distort the effect of zj. For each diagram the fixed portion of the intercept,

c00, and the variances of residuals, r2 and s00, are excluded for parsimony. *xij is commonly grand-

mean-centered, yielding an equivalent model with the same slopes.
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control for the level-1 variable or controlling for it inappropriately by conflating level-

specific effects. However, because xij � x�j is entirely uncorrelated with zj, its inclusion

does not affect the slope of zj, as we show formally in the next section.2

2.2. x-mean model

Another way to control for the level-1 variable is simply to include x�j as a predictor

without worrying about the within-cluster effect. We call this the x-meanmodel, and it is

given by

yij ¼ c00 þ cxbx�j þ czzj þ u0j þ eij;

eij �Nð0;r2Þ; ð4Þ

u0j �Nð0; s00Þ:
Thismodel is also shown in Figure 1b. Note that the slope of zj is the same as that in the

fully-disaggregated-x model. To prove this using covariance algebra, we show that the

covariance between yij and zj is the same for both of these models. For the x-meanmodel,

covðyij; zjÞ ¼ covðc00 þ cxbx�j þ czzj þ u0j þ eij; zjÞ
¼ covðcxbx�j þ czzj; zjÞ
¼ covðcxbx�j; zjÞ þ covðczzj; zjÞ
¼ cxbcovðx�j; zjÞ þ czvarðzjÞ: ð5Þ

Hence,

cz ¼
covðyij; zjÞ � cxbcovðx�j; zjÞ

varðzjÞ ; ð6Þ

which is the same expression as shown in equation (3). Thus, researchers exclusively

interested in the slope of zj need only include x�j as a predictor.

2.3. No-x model

We next consider the bias that results from failing to include x�j in the model, which we

term the no-xmodel. Bias resulting from omitted variables is, of course, a well-established

and recognizedphenomenon, not only inMLMbut also in single-level regression andother

modelling frameworks (Rencher, 2000).We present this here as a basis of comparison for

the subsequent conflated model. The no-x model is shown in Figure 1c and is given by

2 Some methodologists have correctly noted that including only a cluster-mean-centered/group-mean-centered
level-1 variable does not appropriately condition the effects of level-2 variables on the level-1 variable, and,
because of this, recommended instead that researchers grand-mean-center level-1 control variables (e.g., Enders
& Tofighi, 2007; Hofmann & Gavin, 1998). However, the option of just group- versus grand-mean-centering the
level-1 variable is not exhaustive, and we show here that neither of these is appropriate (and researchers should
instead include the cluster mean of the level-1 variable as a control).
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yij ¼ c00 þ _czzj þ u0j þ eij;

eij �Nð0;r2Þ; ð7Þ

u0j �Nð0; s00Þ:
We denote the effect of zj as _cz to distinguish it from the true population effect, cz. As

before, we can express this slope as a function of other model parameters. In this no-x

model, the model-implied covariance between yij and zj is

covðyij; zjÞ ¼ covðc00 þ _czzj þ u0j þ eij; zjÞ
¼ covð _czzj; zjÞ
¼ _czvarðzjÞ: ð8Þ

Hence, the slope of interest is

_cz ¼
covðyij; zjÞ
varðzjÞ : ð9Þ

The bias that results from failing to include x�j can be computed by subtracting

equation (9) from equation (3):

_cz � cz ¼
covðyij; zjÞ
varðzjÞ � covðyij; zjÞ � cxbcovðx�j; zjÞ

varðzjÞ
¼ cxb

covðx�j; zjÞ
varðzjÞ : ð10Þ

Thus, assuming there is a non-zero effect of x�j and a non-zero covariance between x�j
and zj, there will be bias in the estimation of the slope of zj when failing to include x�j in
the model. (Note also that this same bias would result had we included only xij � x�j as a
control and not x�j). We next consider how this degree of bias compares to the bias that

results from including xij as control but failing to disaggregate level-specific effects.

2.4. Conflated-x model

Now suppose that a researcher, wishing to estimate a level-2 variable’s slope while

controlling for a level-1 variable, followed current recommendations and simply grand-

mean-centered xij or left xij in its raw form (these are equivalent models differing only in
intercept interpretation; Kreft et al., 1995).Wecall this the conflated-xmodel. Thismodel

is shown in Figure 1d and can be expressed in grand-mean-centered form as

yij ¼ c00 þ cxcðxij � x��Þ þ ~czzj þ u0j þ eij;

eij �Nð0;r2Þ; ð11Þ
u0j �Nð0; s00Þ:

Here x�� denotes the mean of xij across all observations, with cxc denoting the

conflated slope of xij, and ~cz (distinct from the true cz) denotes the slope of the predictor
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of substantive interest. Thismodel ismore restrictive than the fully-disaggregated-xmodel

as it (implicitly) constrains the within-cluster slope equal to the between-cluster slope.3

Methodologists have long recognized that the conflated slope cxc is implicitly a

weighted average of the level-specific effects cxb and cxw (Burstein, 1980; Raudenbush &
Bryk, 2002; Scott & Holt, 1982; Snijders & Bosker, 2012). The conflated slope can thus be

expressed as

cxc ¼ kcxb þ ð1� kÞcxw ; ð12Þ

with k, ranging from 0 to 1, denoting the weight given to the between-effect. For single-

level regression via ordinary least squares (OLS), k in equation (12) is simply the intraclass

correlation coefficient of xij (i.e., the proportion of total variance in xij that is between

clusters; Duncan, Cuzzort, & Duncan, 1961; Raudenbush & Bryk, 2002; Scott & Holt,

1982). Thus the OLS estimator for the conflated slope is equal to

ĉxc ¼ ICCxĉxb þ ð1� ICCxÞĉxw : ð13Þ

This implies that when a great deal of across-cluster outcome variance (or a large ICC)

exists, the conflated estimate will be similar to the between-cluster estimate, whereas
when little across-cluster outcome variance (or a small ICC) is present, the conflated

estimate will be similar to the within-cluster estimate.

For multilevel contexts, the formula for k is a bit more complex. Raudenbush and Bryk

(2002) showed that, for a simple random-intercept model with a single level-1 variable

and non-varying cluster sizes (fit with maximum likelihood estimation), k is the precision

of the between-cluster slope over the sum of the precisions of the between-cluster and

within-cluster slopes, thusmaking the conflated slope a precision-weighted average of the

two. More formally,

ĉxc ¼
varðĉxbÞ�1

varðĉxbÞ�1 þ varðĉxwÞ�1

 !
ĉxb þ 1� varðĉxbÞ�1

varðĉxbÞ�1 þ varðĉxwÞ�1

 !
ĉxw

¼
PJ

j¼1 ðx�j � x��Þ2=ðŝ00 þ r̂2=NjÞ
� �

PJ
j¼1 ðx�j � x��Þ2=ðŝ00 þ r̂2=NjÞ þ

PJ
j¼1

PNj

i¼1 ðxij � x�jÞ2=r̂2

0
@

1
Aĉxb

þ 1�
PJ

j¼1 ðx�j � x��Þ2=ðŝ00 þ r̂2=NjÞ
� �

PJ
j¼1 ðx�j � x��Þ2=ðŝ00 þ r̂2=NjÞ þ

PJ
j¼1

PNj

i¼1 ðxij � x�jÞ2=r̂2

0
@

1
Aĉxw ; ð14Þ

with J denoting the total number of clusters and Nj denoting the cluster size (assumed
equal across clusters).

Here, our primary focus is not specifically on the degree to which the two effects are

weighted via k in estimating the conflated slope. The overarching point of equations (12–
14) is to highlight that, when cxb and cxw are different, cxc is a weighted average of the two

and will be somewhere in between. Although other methodologists have noted this

3 Constraining the level-specific slopes equal in the fully-disaggregated-xmodel yields a single slope for xij, noting
that cxc ðxij � x�jÞ þ cxc x�j ¼ cxc xij. Also, grand-mean-centering this xij as in the conflated-xmodel changes only
the intercept and does not change the slope (Raudenbush & Bryk, 2002; Snijders & Bosker, 2012).
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(Algina & Swaminathan, 2011; Curran & Bauer, 2011; Curran et al., 2012; Enders &

Tofighi, 2007; Hofmann & Gavin, 1998; Raudenbush & Bryk, 2002; Snijders & Bosker,

2012), none have specifically noted how this conflation impacts estimation of slopes of

level-2 predictors.
We can solve for the population ~cz in the conflated-xmodel similarly to howwe solved

for cz and _cz above by first considering the model-implied covariance between yij and zj:

covðyij; zjÞ ¼ covðc00 þ cxcðxij � x��Þ þ ~czzj þ u0j þ eij; zjÞ
¼ covðcxcxij þ ~czzj; zjÞ
¼ covðcxcxij; zjÞ þ covð~czzj; zjÞ
¼ cxccovðxij; zjÞ þ ~czvarðzjÞ
¼ cxccovðxij � x�j þ x�j; zjÞ þ ~czvarðzjÞ
¼ cxcðcovðxij � x�j; zjÞ þ covðx�j; zjÞÞ þ ~czvarðzjÞ
¼ cxccovðx�j; zjÞ þ ~czvarðzjÞ: ð15Þ

Hence,

~cz ¼
covðyij; zjÞ � cxccovðx�j; zjÞ

varðzjÞ ; ð16Þ

Comparing this quantity to the true slope, cz, yields the bias induced by the conflation
in the slope of xij:

~cz � cz ¼
covðyij; zjÞ � cxccovðx�j; zjÞ

varðzjÞ � covðyij; zjÞ � cxbcovðx�j; zjÞ
varðzjÞ

¼ cxbcovðx�j; zjÞ � cxccovðx�j; zjÞ
varðzjÞ

¼ ðcxb � cxcÞ
covðx�j; zjÞ
varðzjÞ : ð17Þ

This expression in equation (17)makes clear the primary point of this paper:when the

conflated slope of the level-1 variable is different than the between-cluster slope of the

level-1 variable (i.e., when level-specific effects of xij are different), the estimation of the

slope of a level-2 variable will be biased, assuming there is a non-zero correlation

between the level-1 and level-2 variables. As we will show, this bias can be substantial.

To emphasize further the adverse impact of using a conflated level-1 variable as a
control, we compare the bias in estimation of the level-2 predictor slope in the conflated-x

model given in equation (17) to the bias from the no-xmodel given in equation (10). The

difference in the absolute values of these expressions is

j~cz � czj � j _cz � czj ¼ ðcxb � cxcÞ
covðx�j; zjÞ
varðzjÞ

����
����� cxb

covðx�j; zjÞ
varðzjÞ

����
����

¼ covðx�j; zjÞ
varðzjÞ

����
���� cxb � cxc
�� ��� cxb

�� ��	 

:

ð18Þ

Note that this expression is greater than or equal to 0 when
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covðx�j ;zjÞ
varðzjÞ

��� ��� cxb � cxc
�� ��� cxb

�� ��	 
� 0

, cxb � cxc
�� ��� cxb

�� ��� 0

, cxb � cxc
�� ��� cxb

�� ��:
ð19Þ

Thus, whenever the absolute difference in the between effect and conflated effect is

greater than the absolute value of the between effect, the bias will be worse for the

conflated-x model than for the no-x model. In other words, in some cases, researchers

would be better off not controlling for the level-1 variable at all than controlling for it

incorrectly by letting it have a conflated slope. Examples of such situations are shown in

the simulation (Section 3).

2.5. Summary

Three conclusions emerge for situations in which substantive interest is in the slope of a

level-2 variable, zj. First, controlling for a level-1 variable by including its between-cluster

slope (i.e., including x�j as a predictor) appropriately conditions the slope of zj on the

level-1 variable; however, including the within-cluster slope (i.e., xij � x�j) as a predictor
does not and is unnecessary. Second, failing to control for x�j by excluding it from the

model yields bias in the slope of zj, provided x�j and zj are correlated and the slope of x�j is
non-zero. Third, controlling for xij without disaggregating level-specific effects (e.g., by

grand-mean-centering xij) yields bias in the slope of zj, provided x�j and zj are correlated

and the within-cluster and between-cluster slopes of xij are not equal. Importantly, such

bias can be greater than the bias that results from failing to include the level-1 variable in

the model at all. We thus recommend that researchers who are interested solely in slopes

of level-2 predictors condition on level-1 variables by including the cluster mean of xij as a

control. Furthermore, we stress that including a conflated slope of xij as a control is not

appropriate.

3. Simulation

We now present simulation results to explicitly demonstrate the aforementioned points.

We show that the bias from the conflated-x model is particularly large whenever (a) the

absolute value of the correlation between the level-2 predictor zj and the between-cluster
portion of xij is large and/or (b) the level-specific slopes of xij are highly dissimilar.

3.1. Generating conditions

Data were generated from the most general model presented here, that is, the fully-

disaggregated-x model in equation (1). Note that xij was generated from a latent within-

cluster component, xw;ij, with only within-cluster variance, and a latent between-cluster

component, xb;j, with only between-cluster variance, such that xij ¼ xw;ij þ xb;j. The
outcome yij was then generated as a function of the observed xij cluster means, x�j, and
observation-specific deviations, xij � x�j, consistent with standard MLM assumptions.

In designing the simulation, we focused on conditions that would affect the bias in

estimating the slope of zj with the conflated-x model, based on the derivation in the

previous section. The two such conditions apparent fromequation (17) are themagnitude

of the difference in within and between effects of xij and the correlation between zj and

x�j. Secondarily, we also manipulated cluster size and number of clusters, as these would
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impact the precision weighting that occurs in estimating the conflated slope of xij
(Raudenbush & Bryk, 2002). Finally, to highlight the point that the conflated-xmodel can

be problematic both when there is a true, non-zero effect of zj and even when there is no

effect of zj at all, we manipulated the slope of zj to be either zero or non-zero.
Each of xw;ij, xb;j, and zj was generated with a variance of 1, with xw;ij normally

distributed and xb;j and zj bivariate normally distributed with correlation qxbzj (note that
although xij has across-cluster variance, xw;ij by definition varies only within cluster and

thus necessarily is uncorrelated with the level-2 variables). We varied qxbzj across the

parameter space (–.9, –.6, –.3, 0, .3, .6, and .9). The fixed effects (with varying conditions

in parentheses) were

c00
cxw
cxb
cz

2
664

3
775 ¼

1

2

ð�2; 0; 2Þ
ð0; 2Þ

2
664

3
775: ð20Þ

The varying values of cxb created conditions wherein cxw and cxb were either highly

dissimilar (2, –2), dissimilar (2, 0), or identical (2, 2). The level-1 and level-2 residual
varianceswerer2 ¼ 10 and s00 ¼ 4, respectively. The average cluster sizeswere either 10

(discrete uniformly distributed from 5 to 15) or 25 (discrete uniformly distributed from 15

to 35), with total number of clusters either 50 or 100.

In total, this yielded 7� 3� 2� 2� 2 ¼ 168 conditions. For each of these, we

generated 500 samples andfit the fourmodels presented in Figure 1 using lmer in the lme4

package in R (Bates, Maechler, Bolker, & Walker, 2004) with restricted maximum

likelihood estimation. Because the slope of zj was of particular interest,we focused on the

extent to which each model yielded biased estimation of this slope. Secondarily, we also
considered the variance of the estimates of the slope of zj across samples.

3.2. Results

For a parsimonious representation of the results, we focus on a subset of the conditions.

We first note that results pertaining to biaswere virtually identical across sample sizes; the

effects of average cluster size and number of clusters were negligible. We thus present

results from the largest sample size to highlight that the bias induced by the conflated-x
model is not a small-sample issue. We also note that (as expected) the bias and variance

results for the slope of zj were identical across all conditions for the fully-disaggregated-x

model and the x-mean model, thus we will simply present these as the x-mean model

results.

Wefirst present the results for the conditions inwhich the true slopeof zj is non-zero in

Figure 2. Each panel corresponds to one of the three different magnitudes of difference in

the within and between effects of xij: in (a), the level-specific effects are highly dissimilar,

in (b) they are moderately dissimilar, and in (c) they are identical. Each of three plots
shows the bias (y-axis) as a function of qxbzj (x-axis). The two horizontal dashed lines

denote the point atwhich the relative bias is 10% (a commonly used criterion for bias to be

deemed substantial).

As expected based on equation (17), the bias for the conflated-xmodel was greater at

larger absolute values ofqxbzj (and zerowhenqxbzj = 0) andwhen the level-specific effects

of xij were more dissimilar (and zero when they were identical). Noting again that the

horizontal dashed lines denote relative bias of 10%, the bias shown is well beyond what
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can be considered acceptable (and goes up to nearly 200%). As expected, the linear

relation between bias and qxbzj was moderated by the difference between cxw and cxb , as
shown in equation (17). Comparing the bias between the conflated-xmodel and the no-x

model, we see that, with the exception of Figure 2c, the bias is worse for the conflated-x
model than for the no-xmodel for each condition (exceptwhenqxbzj ¼ 0 andneither yield

bias). For instance, in Figure 2b, xij had no actual between effect; thus excluding xij
yielded no bias. The conflated-x model, however, distorted the relation of xij and yij.

Therefore, the slope of zj was conditioned on an apparent (but illusory) between effect of

xij, yielding extreme bias across the correlation space of qxbzj 6¼ 0. Lastly, as expected, the

x-mean model yielded virtually no bias for any condition, despite technically being an

underspecifiedmodel (i.e., excluding xij � x�j). Thus the x-meanmodel is appropriate for

all conditions whether or not level-specific effects of xij differ; the conflated-x model is
appropriate only in the highly restrictive condition in which these are exactly the same.

The bias results for the condition in which the true slope of zj is zero are given in

Figure 3a–c. These are essentially identical to the results when the true slope of zj is non-

zero (with the slight exception that it no longer makes sense to describe ‘relative bias’

when the parameter is zero). We thus do not discuss these further, but present results to

highlight that the conflated-xmodel canmislead researchers into thinking there is either a

positive effect or a negative effect of zj when there is truly no effect at all.

Although not a focus of the simulation, we also note the across-sample variance of the
estimates of the slope of zj for the conflated-xmodel compared to the x-mean model. We

will consider this only for the conditions in which the conflated-xmodel yielded no bias,

that is, when level-specific effects of xij were identical (the bias of the conflated-xmodel

was otherwise too extreme to make a comparison of variances worthwhile). As noted by

other authors, when the assumption underlying the conflated-x model holds (i.e.,

cxw ¼ cxb), thismodel yields themost efficient estimator of the slope of xij (Raudenbush&

Bryk, 2002). Our results indicate that the conflated-xmodel also yielded themost efficient

estimationof the slopeof zj for the conditions inwhich the level-specific effects ofxij were
exactly equal. Averaging across all such conditions, the average standard deviation of the

estimated slope of zj was 0.21 for the conflated-xmodel and 0.31 for the x-mean (and fully-

disaggregated-x) model; however, the difference between the two is less pronounced

(0.21 vs. 0.28)when focusing on conditions inwhich qxbzj was less extreme (not�:9) and

(a) (b) (c)

Figure 2. Bias in estimating the slope (equal to 2 in the population) of a level-2 variable. Notes. In

Panel B the no-xmodel and x-mean model overlap entirely. In Panel C the conflated-xmodel and x-

mean model overlap entirely. Outside of the two horizontal dashed lines, relative bias is >10%.
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likely more realistic. We caution readers, however, that this improvement is fairly small

when compared to the bias resulting from the conflated-x model with unequal level-

specific effects, in which the relative bias was almost 200% for some conditions. Thus, we

maintain our recommendation to use the x-mean model, noting that it may be unrealistic

to assume that level-specific effects are exactly equal in practice (Preacher et al., 2010).

4. Empirical example

To illustrate the potential distortion of results that can occur with the conflated-xmodel,

we present an empirical example in which substantive interest is in the effect of a level-2

variable after controlling for a level-1 variable. We present an abbreviated version here.

More extensive details can be seen in the Appendix S1 to this article and in Cole et al.

(2019).

Data were obtained via an adaptation of Cole et al.’s (2014) Behind Your Back
procedure. In this procedure, 272 adolescents listened to recordings of 21 conversations

of a boy and a girl talking about an absent third person, with the gender of the third person

matching that of the participant. The content of the conversations ranged from mild to

mean. Participantswere instructed to imagine theywere overhearing conversations about

themselves and to answer conversation-specific questions about their negative

appraisal, their cognitive reaction, and their emotional reaction of sadness to each

event. The 21 conversation-specific observations were nested within adolescent. Of

substantive interest is the effect of an adolescent’s propensity fornegative appraisal (NA)
of events (level-2 predictor) on negative cognitive reaction (COG) to events, above and

beyond that attributable to one’s event-specific emotional reaction of sadness (SAD;

level-1 control variable).

We fit each of the four models in Figure 1 to these data, with the associated slope

estimates provided in Figure 4. In both the fully-disaggregated-x and x-mean models, the

level-specific effects of SAD are positive and significant; however, no effect of NA was

detectable. The no-xmodel failed to control for SAD altogether, and the effect of NAwas

significant. In the conflated-xmodel (themost common approach in practice), thewithin-
and between-cluster effects of SAD are conflated into a single slope and the effect ofNA is

significant. The effect of NA was appropriately conditioned on person-mean SAD in the

(a) (b) (c)

Figure 3. Bias in estimating the slope (equal to 0 in the population) of a level-2 variable. Notes. In

Panel B the no-xmodel and x-mean model overlap entirely. In Panel C the conflated-xmodel and x-

mean model overlap entirely. The horizontal dashed line denotes zero bias.
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former twomodels (with identical estimates, as expected), and was distorted in the latter

two.

This example shows that using conflated slopes of level-1 variables as a control for

level-2 variables can severely distort results and profoundly alter the substantive
implications. Controlling inappropriately with the conflated-xmodel would suggest that

one’s propensity forNAhas a direct impact onCOG that is comparable to the direct impact

of SAD. Controlling appropriately with either the fully-disaggregated-x model or the x-

mean model suggests that the association of NA and COG can be better understood

through the relation with SAD.

5. Discussion

We have argued that, despite methodological recommendations suggesting otherwise, it

is inappropriate to use level-1 predictors as control variables for level-2 predictors if level-

specific effects of the level-1 predictors are conflated. We showed mathematically why

doing so will yield biased estimation of level-2 predictor slopes and provided corrobo-

rative simulation results. We also demonstrated with real data the distortion of results for

level-2 predictor slopes that occurs with conflated level-1 control variables. In sum, we

Panel A: Fully-disaggregated-x model :BlenaP x-mean model

Panel C: no-x model Panel D: Conflated-x model

Figure4. Empirical example results: Predicting cognitive response using eachof the fourmodelling

approaches. *p < .005.
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recommend that, if researchers are solely interested in the effects of level-2 predictors,

they can use the cluster means of level-1 predictors as control variables.4

A caveat is that, when level-specific effects of level-1 variables are identical in the

population, it is technically no longer necessary to disaggregate the two, and when
disaggregating, a superfluous parameter is freed up which yields more variance in

estimation (as discussed in the simulation in Section 3). We feel, however, that the

assumption of equal level-specific effects is highly restrictive. Indeed, others have argued

that this assumption rarely holds in practice (Preacher et al., 2010). Thus,wemaintain our

recommendation not to conflate effects of level-1 control variables. At the very least, we

strongly encourage researchers not to blindly assume that the two effects are equal.

Regarding the generalizability of our simulation results, we first note that, in practice,

researchers may have multiple level-1 control variables. In these cases, the expected bias
in estimating level-2 slopes induced by conflation would be more complex than that

shown in equation (17), as multiple conflated slopes would distort the model, and the

amount of bias could potentially be exacerbated. One could avoid this by including the

cluster mean of each level-1 control variable as a separate predictor. Second, despite our

aforementioned focus on fixed slopemodels, none of the analytic results discussed in this

paper would change if we had considered random slope models; that is, the addition of a

random component of the slope of the level-1 predictors would not affect the last line of

equations (6), (10) and (17).We thus expected that the inclusion of random slopeswould
not meaningfully affect the simulation results. To confirm, we reran the entire simulation

with random slopes of level-1 predictors (with the slope variance set to be a quarter of the

random intercept variance) and found virtually identical results (i.e., the plots in Figures 2

and 3 were unchanged). Finally, another consideration is our choice of parameter values,

in particular the degree of discrepancy between the within-cluster and between-cluster

effects of the level-1 variable. Making general statements about the expected discrepancy

in practice is difficult: in certain contexts, highly disparate level-specific effects might be

expected (e.g., Baldwin, Wampold, & Imel, 2007; Marini et al., 2013; Wang & Maxwell,
2015),whereas in other contexts differences between the twomight be negligible or non-

existent. Future work can systematically investigate the research contexts in which

disparate level-specific effects aremost likely, in order to determine the contexts inwhich

conflation is likely to have biased the estimation of level-2 effects.

Future work can also extend the points made here to latent variable models.

Particularly with multilevel structural equation modelling, researchers can decompose

level-1 variables into latent within- and between-cluster components, rather than using

observed clustermeans (Asparouhov&Muth�en, 2019; L€udtke et al., 2008; Preacher et al.,
2010). The basic ideawould still apply: whenmodelling xij as a latent variable onwhich to

condition the effect of a level-2 predictor, the latent xij level-specific effects should still be

disaggregated; that is, an explicit latent between-cluster component of xij (xb;j) should be

included in the model.

Our hope is that this work will discourage researchers from specifying models with

conflated level-1 variables as controls for level-2 variables. Researchers historically have

4This implies that one could use aggregated data (i.e., analyse only cluster means of variables) in a single-level
analysis to avoid conflation when interest lies primarily in level-2 effects. However, MLM has advantages in that
one can also include level-1 predictors of secondary interest, and can quantify the amount of within-cluster and
between-cluster outcome variation, as well as the proportion of within-cluster and between-cluster variance
accounted for by predictors (Rights & Sterba, 2019). Additionally, within amultilevel framework, one canmodel
clustermeans as latent variables,whichcan avoid biaswhenclustermeans aremeasuredwith error (L€udtke et al.,
2008; Preacher et al., 2010).
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not worried about decomposing level-1 control variables due to a lack of interest in their

potential disparate level-specific effects. However, failing to appropriately disaggregate

these effects can yield serious distortion of results pertaining to other predictors in a

model, regardless of one’s interest in the effect(s) of the level-1 variable itself. We
encourage researchers to be mindful of the fact that controlling for a variable merely by

including it as a predictor is not sufficient; it is necessary tomodel its effects appropriately.
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